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Introduction. The Kac-Moody algebra E11 has been conjectured to be the algebra de-

scribing the symmetries of M-theory [1]. The arguments used to make this conjecture were

based upon previously unnoticed properties of D=11 supergravity, leading to its formula-

tion as a nonlinear realisation which included the Borel generators of E7. These arguments

lead to an E11 algebra in eleven dimensions encoding the symmetries of M-theory. Gen-

eralised Kac-Moody algebras, such as E11, are not well understood and analysis of their

content is hampered by the lack of a simple way of applying the Serre relations to the

putative generators of the algebra. However E11 belongs to a class of algebras known as

Lorentzian Kac-Moody algebras which have the property that the deletion of one node of

the defining Dynkin diagram leaves behind a set of Dynkin diagrams of finite dimensional

groups [2]. Progress has been made by decomposing the algebra into representations of
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finite dimensional sub-algebras which are graded by a level and analysing the content.

Analysing the low-level content of the adjoint representation of E11 in this way one can re-

produce the dynamics of the bosonic sector of D=11 supergravity. In addition one finds all

the bosonic fields of the D=11 supergravity theory at the lowest levels of the decomposition

as well as the dual gravity field leading to a dualised gravity theory.

However in the original non-linear realisation of the E11 symmetry the translation

generator had to be added in by hand. Space-time did not emerge from the adjoint rep-

resentation of E11. It was proposed that one could more naturally include spacetime by

enlarging the algebra to include its first fundamental representation, or the l1 represen-

tation, as well as the adjoint representation of E11 [3]. The success of this approach is

that the translation generator is associated to the highest weight of the l1 representation

and appears at the lowest level in the l1 representation. Furthermore one finds that the

l1 representation contains generators having the correct index structure to be interpreted

as the central charges of the supersymmetry algebra, even though the arguments used to

conjecture an E11 symmetry considered only the bosonic fields of supergravity.

The associations between the l1 representation and the adjoint representation of E11 as

well as other very-extended algebras have been studied in detail in [5]. It has been proposed

that the full set of brane charges of M-theory are contained in the l1 representation of E11 [3]

and, in fact, for every generator of the adjoint representation of E11 one can associate a half-

BPS brane solution [4] and in the l1 representation one can find a corresponding generator

associated with the conserved charge on the brane. Following the proposition that the

l1 representation contains the brane charges of M-theory, the brane charge multiplets in

three dimensions which are predicted by U-duality [6 – 10] have been found inside the l1

representation [11], and the particle multiplet has been identified in all dimensions from

three to eight in [12]. To find the three dimensional charge multiplet the dimensional

reduction on an 8-torus was carried out as a decomposition of the l1 representation into

representations of an A2⊗E8 sub-algebra. In this paper we further the arguments in favour

of the relevance of the l1 representation by deriving all the possible charge multiplets from

its algebra in three to eight spacetime dimensions.

If the conjecture is true that string theory, and M-theory, do carry a Kac-Moody

algebra one may hope to better understand the algebras by making connection with areas

of string theory that are well understood. One direction forward is by the introduction

of group theoretical constructions that can be argued to have a clear interpretation in

terms of the string theory. The most fundamental properties in a physical theory are those

that give rise to the simplest dimensionful quantities. Space and time are already present

inside the algebraic construction, via the local Lorentzian symmetry algebra, but a natural

interpretation for mass is missing. In the case of string theory a non-perturbative concept

amenable to study is the tension of BPS p-branes, or the mass per unit volume. Indeed

previously [6 – 10] a group theoretical tension formula has been constructed as an empirical

tool to discover the charge multiplets of M-theory and string theory by application of U-

duality symmetries. It is our principle aim in this paper to derive this tension formula

in the context of E11 and to check our formula by duplicating the tensions found in the

U-duality charge multiplets.
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A by-product of the tension formula that will be derived is the observation that most of

the l1 representation is associated to exotic charges carried by KK-branes, which are higher-

dimensional generalisations of the KK-monopole and provide a higher dimensional origin to

certain brane charges and KK-modes in lower dimensions (see, for example, [21, 22]). Some

of these KK-brane charges have been observed as a consequence of U-duality in [6 – 10].

The l1 representation of E11 includes all the exotic KK-brane charges expected by U-duality

transformations, and these are organised into finite sets within the l1 representation. The

interpretation of KK-brane charges offers a new way to decompose the E11 algebra, and

conversely the l1 representation also offers a classification of all the KK-brane charges

expected in M-theory. We will present the full set of the simplest class of KK-brane

charges expected in M-theory, as well as in the IIA and IIB string theories.

The discussion in the paper will be split into two parts. First in sections 1 and 2 we

will give explicit decompositions of the l1 algebra. In the first section we will give the

decomposition of the l1 representation of E11 relevant to the eleven dimensional theory as

well as the decomposition to the two ten-dimensional theories. We present this original

decomposition using an explicit basis for the root lattice vector space that has not been

used in the E11 literature previously that will greatly simplify our observations later in this

paper. In section 2, we study the l1 representation and identify how the charge multiplets

are organised inside the representation, we then derive explicitly the charge multiplets of

M-theory in three to eight dimensions. The abstract decomposition of the l1 representation

into representations of AD−1 ⊗ E11−D for D spacetime dimensions is given in section 2.1.

In section 2.2 we give the criteria for finding rank p charges in the AD−1 algebra and find

the corresponding representations in the E11−D algebra. In the remainder of section 3

we reproduce the particle, string and membrane charge multiplets in various dimensions

and give the tensions of the exotic charges according to the formula that will be presented

later in this paper. The tensions for the particle and string multiplets confirm the findings

in the literature but the membrane multiplet charges have not been presented explicitly

before. In the second part of the paper, commencing with section 3, we will present a

tension formula and use it to derive the tensions associated to the fundamental objects of

M-theory and string theory in section 3.3 from the roots of the l1 representation, based on

the computations in the section 1. Expressions for the tension associated to any root in

the l1 representation are given in section 3.3 and the simplest KK-brane charges are listed

in their entirety.

1. The l1 representation of E11

E11 is described completely by its Dynkin diagram which is found by attaching three

additional roots to the longest leg of the E8 diagram, each extra simple root having the

same length as any root of E8.

By deleting the exceptional node, labelled eleven, one finds representations of the

remaining A10 sub-algebra, graded by the level, which is the number of times the deleted

simple root must be added to the A10 root to make it into an E11 root. Decomposing

the algebra in this way one finds the adjoint representation of E11 and at the first few
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Figure 1: The Dynkin diagram of E11.

levels one finds the gravitational field, a three-form field, a six-form field and the dual

to gravity field. With the exception of the dual to gravity these fields are well-known

bosonic fields from eleven dimensional supergravity. Dimensionally reducing the algebra

to D dimensions corresponds to deleting different nodes of the Dynkin diagram leaving

representations of AD−1 sub-algebras. For example in the reduction to ten dimensions

there is choice of which nodes to delete and this gives rise to one of the most beautiful

aspects of the construction, namely that the two choices correspond to the choice of IIA

or IIB theories in ten dimensions. More explicitly one deletes nodes of the E11 Dynkin

diagram so as to leave behind an A9 Dynkin diagram (a line of nine connected nodes). One

can do this in two ways, by deleting nodes 11 and 10 or by deleting node 9, which yields

the bosonic fields of the IIA and IIB theories respectively in an elegant way.

The representations of E11 other than the adjoint are also interesting and of direct

relevance to theoretical physics. The l1, or charge, representation of E11 is believed to

contain all the brane charges of M-theory in the E11 weight lattice [3]. The decomposi-

tion of this algebra to different spacetime dimensions also corresponds to the deletion of

different nodes of its associated Dynkin diagram. Of interest to physicists are the decom-

positions giving representations of SL(11) and SL(10) sub-groups, which give generators in

the algebra conjectured to be the brane charges of M-theory and the two ten-dimensional

supergravity theories respectively. In section 1.1 we will give the decomposition relevant

to M-theory and in sections 1.2 and 1.3 we make the decompositions connected to the IIA

and IIB supergravity theories. The presentation in this section will differ cosmetically from

much of the literature in that it will make use of a vector space basis denoted herein by

{ei} vectors instead of the more usual simple root basis, αi.

We recall that the l1 representation of E11 takes the first fundamental weight of E11,

l1, associated to the translation generator, and treats it as the highest weight of a repre-

sentation in the E11 weight lattice [3]. Alternatively one can obtain the l1 representation

of E11 by extending the E11 Dynkin diagram with a node attached by a single line to the

longest leg of the E11 diagram, giving the Dynkin diagram of E12 shown below, and one

then restricts to just those roots with the coefficient of the extra root, α∗, set to one. In

other words one decomposes E12 by the deletion of the node α∗ and the l1 representation

of E11 is found at level one with highest weight l1, the first fundamental weight of E11.

A general root appearing in the E12 root lattice with m∗ = 1 has the form:

β = α∗ +
11
∑

i=1

miαi (1.1)

Before beginning the decompositions of our algebra a few comments about the root lattices
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Figure 2: The Dynkin diagram of E12.

of generalised Kac-Moody algebras are in order. Whether or not the generic root β appears

in the root lattice depends upon the application of the Serre relations which, in terms of

the Chevalley generators, are,

[Ei . . . [Ei, Ej ] . . .] = 0 [Fi . . . [Fi, Fj ] . . .] = 0 (1.2)

Here there are (1 − Aij) Ei generators (Fi generators in the second relation) where Aij is

the Cartan matrix associated to the Dynkin diagram of the algebra. One consequence of

the Serre relations is that β2 ≤ 2 for roots in the l1 lattice. Another consequence is that any

root appearing in the lattice must have connected support on the Dynkin diagram. These

and another readily defined condition, on the index structure of generators appearing in

the algebra to be discussed later, are sufficient to capture much of the the Serre relations,

and are far easier to apply computationally. The application of the Serre relations in a

simple manner is an open problem in mathematics and later on when we give explicit roots

in the lattice at high levels these are the criteria that will have been applied.

1.1 The eleven-dimensional theory

Our aim here is to decompose the l1 representation into representations of a preferred

A10 sub-algebra, giving representations of SL(11). This decomposition has been made

previously [5] but here we will present the results using a vector space basis {e∗, e1, . . . e11}
for the root lattice that will simplify later calculations in the paper but has not been much

used in the literature previously. The preferred A10 algebra is given by the Dynkin diagram

of E12 shown above when the nodes indicated by a ∗ and 11 are deleted and is called the

gravity line in this decomposition. The generators will be SL(11) tensors graded by a level

and are believed to be the brane charges of M-theory.

We first decompose the roots into components in the E11 lattice and a vector orthogonal

to it, which we shall call y, by writing

α∗ = y − l1 (1.3)

Where l1 is the first fundamental weight of E11, we recall that fundamental weights are

dual to the corresponding simple roots of an algebra:

< λi, αj >= δij (1.4)

Where λi denotes the i’th fundamental weight and αi are the simple roots indicated by the

Dynkin diagram of the algebra. In this case, α2
∗ = 2 and l21 = 1

2 , so that y2 = 3
2 . It will
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be useful later to consider an explicit vector space basis for our root system. We introduce

the basis {e∗, e1, . . . e11} endowed with the Lorentzian inner product:

< a, b >=
11

∑

i=∗

aibi −
1

9

11
∑

i=∗

ai

11
∑

j=∗

bj (1.5)

Where a =
∑11

i=∗ aiei and similarly for b. We represent the simple roots of E12 in this

basis with,

αi = ei − ei+1 i = ∗, 1, 2 . . . 10

α11 = e9 + e10 + e11 (1.6)

So that the inner products between the simple roots encoded in the Cartan matrix are

reproduced, and all roots have length-squared normalised to two. In this notation the

vector y is,

y = e∗ −
1

2
(e1 + · · · + e11) (1.7)

A generic root in the l1 representation therefore takes the form:

β = y − l1 +

11
∑

i=1

miαi (1.8)

And defines the weight vectors in the E11 lattice descended from the highest weight l1:

Λ = l1 −
11
∑

i=1

miαi (1.9)

We may further decompose1 the root into components with roots in the A10 lattice and a

vector orthogonal to it, z. We write,

α11 = z − λ8 (1.10)

Where λi is the i’th fundamental weight of A10, defined in relation to the simple roots of

A10 by < λi, αj >= δij . Explicitly,

z =
3

11
(e1 + · · · + e11) (1.11)

Where z2 = − 2
11 . The fact that the orthogonal component has an imaginary length is the

sign of an indefinite algebra - from the Serre relations which define the Kac-Moody algebra

we deduce that all roots in the algebra have length-squared less than or equal to two. It is

the existence of a negative contribution to the root length that leads to an infinite algebra.

It also allows us to sensibly decompose the infinite algebra into infinite copies of a finite

algebra graded by the orthogonal imaginary component.

1We note that in the E11 literature m11, the coefficient of α11, is often referred to as the level of the

decomposition and denoted l, but here, since we will consider decompositions characterised by more than

one level we will continue using the notation m11.
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We note that α∗ = y + 3
2z − λ1 in this decomposition. So that,

β = y +

(

3

2
+ m11

)

z − Λ̂ (1.12)

Where,

Λ̂ = λ1 + m11λ8 −
10
∑

i=1

miαi ≡
10
∑

i=1

piλi (1.13)

Λ̂ is a highest weight representation in the weight space of A10, SL(11). By taking the

inner product with the fundamental weight λj we find the coefficients of the simple roots

in β,

mj =

{

j
11 (3m11 + A − 1) − Bj + 1, j ≤ 8
j
11 (−8m11 + A − 1) − Bj + 8m11 + 1, j > 8

(1.14)

Where we have defined the useful, integer expressions A ≡ ∑10
i=1 ipi and Bj ≡ ∑j

i=1 ipi +

j
∑10

i>j pi.The simple root coefficients must be positive integers. So a general solution is

given by

m11 =
1

3
(−A + 1 + 11k) (1.15)

Where k is an integer which is bounded from below by the condition that m1 ≥ 1, implying

that k ≥ ∑

pi. Let us explicitly realise the lower bound on k by rewriting k as

k ≡
10
∑

i=1

pi + C (1.16)

Where C is a constant greater than or equal to zero. Substituting this expression for k

into the expression for the level, m11, we have,

m11 =
1

3

( 10
∑

i=1

(11 − i)pi + 1 + 11C

)

(1.17)

At each level m11 we will find representations of SL(11) described by the pi and the new

parameter C. We can now give a direct interpretation of C in terms of the blocks of

antisymmetrised indices that appear on the SL(11) generators. We recall that the l1 rep-

resentation as a representation of SL(11) is formed from its highest weight, the translation

generator, Pa, by its commutator action with the three-form generator, Ra1a2a3 . At level

m11 the three form generator acts m11 times on the translation generator. Consequently

we can express the number of indices, #, of any generator appearing at level m11 as

# = 3m11 − 1 (1.18)

By the same analysis one can see that number of indices on the generators of the adjoint

representation of E11 is three times the level [20]. Substituting the expression for m11

we have,

# =
10

∑

i=1

(11 − i)pi + 11C (1.19)
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The first term gives the index structure of an SL(11) tensor, that is the pi control the

blocks of indices in our generator of length less than eleven, while C, controls the number

of blocks of eleven antisymmetrised indices. Blocks of eleven indices are proportional to the

completely antisymmetric tensor, or volume form ǫ, in eleven dimensions, and correspond

to trivial representations of SL(11). We therefore note that an interesting choice is to set

C = 0 and so k =
∑

pi, if we do this we exclude from our algebra any generators containing

the volume form, ǫ.

Substituting our expression for m11 into the simple root coefficient expressions above

we have:

mj =

{

jk − Bj + 1, j ≤ 8

m11(8 − j) + jk − Bj + 1, j > 8
(1.20)

To reiterate we have solved the problem of finding which roots occur in the E12 lattice

at a particular level m11 (with m∗ = 1) in terms of an integer k which is bounded above

and below. We observe that m1 ≥ 1 since we are considering irreducible representations

meaning that roots in the algebra must have connected support on the Dynkin diagram2

(and do not form a sub-algebra) and, by construction m∗ = 1, therefore any root in the l1

representation must have m1 ≥ 1. In our notation above, the variable k is bounded from

below in terms of the weight coefficients of the A10 representation at each level:

k ≥
10
∑

i=1

pi (1.21)

Consequently we find the generic root β corresponding to the l1 representation of E11:

β = e∗ +

10
∑

n=1

(

k −
10

∑

i=n

pi

)

en + ke11 (1.22)

Such that,

β2 =
1

9
(8 − A2 + 2A − 22k2 − 22k + 4Ak) +

10
∑

i=1

piBi (1.23)

The fact that β2 = 2, 0,−2 . . . gives an upper bound on k. An interesting class of roots

occurs when we consider the lower bound for k, i.e. k =
∑

i pi, which corresponds to

generators having no blocks of eleven antisymmetrised indices, i.e. not including volume

forms, ǫ. In this case,

β2 =
1

9

[

8 +
10
∑

i=1

p2
i (11 − i)(i − 2) − 2

10
∑

i=1

pi(11 − i) + 2
∑

j>i

pipj(11 − j)(i − 2)

]

(1.24)

We recall that a putative root exists when β2 = 2, 0,−2 . . . is satisfied by the weight labels

pi for a given level m11. At low levels one finds the translation generator, Pa, a two-form,

Zab, and a five-form, Zabcde. These are tensors which have the correct index structure to be

2That is, the non-zero coefficients of a root in E12 are all connected by the links of the Dynkin diagram

when laid out on top of the diagram.
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interpreted as the central charges of the supersymmetry algebra in eleven dimensions. This

is quite surprising not least because we have been working solely with bosonic fields but also

because the charge algebra is infinite and continues beyond the well-known supersymmetry

charges. We list the low-level content derived in this section in table 25 in the appendix.

The results of this computational problem were originally given in [5] and in the notation

of this section, and to much higher levels, in [16].

1.2 The ten-dimensional IIA theory

We now carry out the reduction from the eleven-dimensional theory to the ten dimensional

one, which has previously been carried out in [5], but as noted earlier we will use a different

notation useful to our later computations. The IIA theory may be obtained from the eleven

dimensional supergravity theory by dimensional reduction on a circle [23]. In terms of the

algebra we delete a node of the A10 lattice that gives an A9 lattice. For the l1 representation

this means the deletion of α10 in addition to the deletions of α∗ and α11 given in section

1.1. The procedure is an extension of that carried out in the previous section. We denote,

α10 = w − ν9 (1.25)

Where νi are the fundamental weights of the A9 lattice containing the roots α1, α2, . . . α9.

So that w2 = 11
10 and

w =
1

10
(e1 + · · · e10) − e11 (1.26)

In this decomposition we have,

α∗ = y +
3

2
z − 1

11
w − ν1 (1.27)

α11 = z − ν8 −
8

11
w (1.28)

Therefore,

β = y +

(

3

2
+ m11

)

z +

(

− 1

11
− 8

11
m11 + m10

)

w − Λ (1.29)

Where Λ is a highest weight in the A9 algebra, specifically we have,

Λ = ν1 + m11ν8 + m10ν9 −
9

∑

i=1

miαi ≡
9

∑

i=1

piνi (1.30)

Taking the inner product with νj we find,

mj =

{

1
10 (−A + 8m11 + 9m10 + 1), j = 9
j
10 (A + 2m11 + m10 − 1) − Bj + 1, j ≤ 8

(1.31)

Where A =
∑9

i=1 ipi and Bj ≡ ∑j
i=1 ipi + j

∑9
i>j pi. To find integer coefficients we find

solutions parameterised by two variables, q and k, and related to the two deleted nodes of

– 9 –
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the E11 part of the Dynkin diagram:

m11 =
1

2
(−A − q + 9k + 1), (1.32)

m10 = q + k, (1.33)

m9 = m11 + q, (1.34)

mj = kj − Bj + 1, j ≤ 8 (1.35)

We note that k ≥ ∑9
i=1 pi and q ≥ −k. The solution corresponds to SL(10) tensors with

2m11 + m10 − 1 indices, associated to m11 adjoint actions of Ra1a2 , m10 actions of Rb and

one action of the translation generator, Pc in the algebra. Denoting the number of indices

on a generator appearing in the algebra by #, we have,

# ≡ 2m11 + m10 − 1 (1.36)

= −A + 10k (1.37)

=

9
∑

i=1

(10 − i)pi + 10C (1.38)

Where in the last equality we have expressed the lower bound on the variable k by writing

k =
∑10

i=1 pi + C where C ≥ 0 is a constant. We see that C controls the blocks of ten anti-

symmetrised indices appearing in the algebra, which are related to trivial representations of

SL(10). By setting C = 0 and so k =
∑10

i=1 pi we neglect these trivial representations whose

generators carry blocks of ten antisymmetrised indices. However for general k we have,

β = e∗ +

9
∑

n=1

(

k −
10
∑

i=n

pi

)

en + ke10 + (m11 − m10)e11 (1.39)

And,

β2 = 1 + 2q2 + 2k2 + A(q − k) − 6qk − q − k +
9

∑

i=1

piBi (1.40)

As mentioned, the interesting set of solutions is given by considering k =
∑9

i=1 pi and let

us rewrite q = k + a where we have shifted q to simplify the notation and a ≥ −2k is an

integer. In this case we have,

β2 = 1 + a(2a − 1) +

9
∑

i=1

p2
i (i − 2) +

10
∑

i=1

pi(a(i − 2) − 2) + 2
∑

j>i

pipj(i − 2) (1.41)

The results of this section are readily used to compute the charge algebra corresponding

to the IIA theory and the weights at low levels are shown in table 26 in the appendix.

Amongst the charges we find a scalar, Z, the charge of the fundamental string Za, the

NS5 brane charge, Za1...a5 and even forms Za1a2 , Za1...a4 , Za1...a6 , Za1...a8 corresponding

to the Ramond-Ramond brane charges of the D0, D2, D4, D6 and D8 branes of type IIA

string theory.

– 10 –
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1.3 The ten-dimensional IIB theory

The charge algebra corresponding to the IIB theory, which has not been presented in the

literature before, is obtained by deleting α∗, α9 and α10 from the Dynkin diagram of E12

and finding representations of the A9 algebra whose positive simple roots are α1, α2, . . . α8

and α11. In this decomposition we delete,

α∗ = y + x − 1

2
v − µ1 (1.42)

α10 = x − 5

2
v (1.43)

α9 = v − µ8 (1.44)

Where we denote by µi the fundamental weights of the A9 Dynkin diagram dual to the

roots {α1, . . . α8, α11}. We have introduced the vectors,

x =
1

2
(e1 + · · · e10) + e11, x2 = −1

2
(1.45)

v =
1

5
(e1 + · · · e9) −

1

5
(e10) +

4

5
e11, v2 =

2

5
(1.46)

Now,

β = y + (1 + m10)x +

(

− 1

2
+ m9 −

5

2
m10

)

z − Λ (1.47)

Where,

Λ = µ1 + m9µ8 −
8,11
∑

i=1

miαi ≡
8,11
∑

i=1

piµi (1.48)

By taking inner products with the fundamental weights of the A9 we find,

mj =

{

1
10 (−A + 8m9 + 1), j = 11
j
10 (A − 1 + 2m9) − Bj + 1, j ≤ 8

(1.49)

We parameterise the roots using m9 = 1
2(−A + 1 + 10k) and find,

mj =

{

m9 − k, j = 11

jk − Bj + 1, j ≤ 8
(1.50)

In this case we have A =
∑8

i=1 ipi + 9p11 and Bj =
∑j

i=1 ipi + j
∑8,11

i>j pi. The solution

gives tensors of A10 which have 2m9 − 1 indices, counting the number of actions (m9) of

the two form generator Za1a2 contracted with the translation generator Pa. Let us use #

to denote the number of indices on an arbitrary generator appearing in the algebra, then,

# ≡ 2m9 − 1 (1.51)

= −A + 10k (1.52)

=
8

∑

i=1

(10 − i)pi + p11 + 10C (1.53)
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The last term counts blocks of ten antisymmetrised indices, corresponding to trivial rep-

resentations of SL(10), and by setting C = 0, and thus k =
∑8,11

i=1 pi, we disregard these

representations. Note that in this case we have an SL(2) symmetry corresponding to the

α10 root that was deleted and not directly attached to the A9 gravity line of roots. This

SL(2), given by a Dynkin diagram with a single node, has its own weight lattice. The

fundamental weight in this A1 diagram is ν ≡ 1
2α10. One can find the components of the

vectors orthogonal to the A9 lattice, x, v which are in the ν direction:

1

x2
< x, ν >= −1

2

1

v2
< v, ν >= −1 (1.54)

Therefore by writing the A1 highest weight as qν we find, taking the inner product with ν,

m10 =
1

2
(m9 − q) (1.55)

If we parameterise q = m9 − 2l, we have,

m10 = l (1.56)

Consequently,

β = e∗ +

9
∑

n=1

(

k −
8,11
∑

i=n

pi

)

en + (l − k)e10 + (m9 − k − l)e11 (1.57)

And,

β2 = 1 + 2l(l − m9) + 10k2 − 2kA +

8,11
∑

i=1

piBi (1.58)

We write the root length squared in this form to illustrate the point that if m10 = l gives a

solution (i.e. root length squared less than or equal to two) then so does m10 = m9−l which

is due to the Weyl reflection perpendicular to α10. For the special case k =
∑8,11

i=1 pi then,

β2 = 1+ l(2l−1)+
8

∑

i=1

p2
i (10− i)+p2

11−
8

∑

i=1

pi(10− i)−p11 +2

j=8
∑

j>i

pipj(10− j)+2
∑

i<11

pip11

(1.59)

The results of this section are used to compute the charge algebra corresponding to the IIB

theory to low-levels in table 27 of the appendix. Amongst the charges we find odd forms

Zaα, Za1...a3 , Za1...a5α, Za1...a7(αβ) and Za1...a9(αβγ) corresponding to the brane charges of

the fundamental string and the D1 brane; the D3 brane; the D5 brane and the NS5 brane;

D7, D9 branes as well as their S-dual charges of IIB string theory. The Greek indices

α, β . . . transform under the SL(2) symmetry.

2. Exotic charges

The U-duality transformations of toroidally compactified M-theory are the Weyl reflections

of an En root lattice with different brane states being represented by weights of En [6, 7, 10,
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17, 18]. A group-theoretic approach to uncovering U-duality En multiplets was given in [8,

9] and we will recover aspects of this analysis. The weight vector corresponding to the brane

solution encodes the tension of the BPS brane states and application of the Weyl reflections

of En fills out the U-duality brane charge multiplets. Foe example the particle multiplet

was discovered by encoding the well-known particle brane solution as a weight vector and

then applying the U-duality transformations to it. The new solutions found under the

action of all the combinations of the U-duality transformations completed the particle

multiplet. In this construction the tension weight vector was introduced as an empirical

tool. The brane multiplets containing the particle and string charges were recognised as

fundamental representations of the En algebra. For example upon dimensional reduction

to three dimensions (n=8) the particle multiplet has highest weight λ1 (248) and the string

multiplet λ7 (3875), where λi are the fundamental weights of En. This work is discussed

in detail in the original papers [6, 7, 10, 17, 18], but especially in the review [9].

In addition to the expected brane charges, coming from the dimensional reduction

of charges associated to brane solutions in eleven dimensional supergravity, many exotic

charges were also present in the U-duality charge multiplets whose higher dimensional

origin was unknown. Exotic charges, in other words, are not derived from the dimensional

reduction of the central charges appearing in the decomposition of the antiicommutator of

the eleven dimensional supercharges [25],

{Qα, Q̄β} = ΓαβPM +
1

2
ΓMN

αβ ZMN +
1

2
ΓMNPQR

αβ ZMNPQR (2.1)

For example by dimensionally reducing PM , ZMN , ZMNPQR to five dimensions one recov-

ers the 6⊕ 15 ⊕ 6 = 27 of SU(6) by assigning all the central charge indices to be inter-

nal indices. This agrees with the U-duality particle multiplet in five dimensions found

in [6, 7, 10, 17, 18]. However the particle multiplet in four dimensions derived from

the central charges of the eleven dimensional supersymmetry algebra reproduces only the

7 ⊕ 21 ⊕ 21 = 49 of the degrees of freedom of the 56 of SU(6), which is the representa-

tion of the particle multiplet in four dimensions. The extra seven charges found in the

particle multiplet in four dimensions are derived from the dimensional reduction of charges

other than the usual central charges of the eleven dimensional superalgebra and are exotic

charges. These extra states in D = 4 were associated to the compactification of the KK6

monopole, having charge ZMNPQRST,R which does not appear in the supersymmetry al-

gebra, wrapping the T 7 in the compactification. In D = 3 many more exotic states were

uncovered in the charge multiplets whose eleven dimensional origin was unclear.

The conjecture that the l1 representation of E11 contains the full set of brane charges

of M-theory gave an eleven-dimensional origin to these observations [5]. The Weyl group

of the En sub-algebras, appearing upon dimensional reduction, being implicitly included

from the outset. Furthermore the inclusion of the charge associated to the dual to gravity

field in the eleven-dimensional algebra, the field giving rise to the KK6 monopole, from the

outset explains the appearance of the exotic states appearing upon reduction to D = 4.

The l1 representation of E11 contains an infinite set of charges in addition to the central

charges of the supergravity algebra and the charge of the KK6 monopole. It is these extra

– 13 –



J
H
E
P
1
1
(
2
0
0
8
)
0
9
1

Figure 3: The decomposition of E12 to AD−1 ⊗ E11−D.

charges which give an eleven dimensional origin to the exotic charges appearing in the

U-duality brane charge multiplets. These exotic charges are all associated to KK-branes,

which we will consider further in section 3.

In this paper we will derive essentially the same tension formula that played a crucial

role in uncovering the U-duality multiplets in [8, 9] but the expression given here will have

a simple origin in the E11 conjecture. Compared to the original work uncovering the U-

duality multiplets we will work in a reverse sense. First we will derive the brane charge

multiplets from E11 and then second we will apply a tension formula to the results. Our

aim will be to demonstrate the validity of the tension formula, but to do so we will first

decompose the l1 representation of E11 to various dimensions (3 ≤ D ≤ 8) and identify

the brane charge multiplets. We note that the reduction to three dimensions of the l1

representation of E11 has previously been carried out in [11] and the particle multiplet has

been derived from l1 representation in dimensions, D, where 3 ≤ D ≤ 8 in [12] in all cases

the results were in perfect agreement with the U-duality multiplet of charges.

In this section we extend the work of [11] and outline the decomposition of the l1 algebra

to arbitrary dimensions, D < 11, which is the algebraic equivalent of compactification on

a (11-D)-torus and then apply the tension formula, which will be derived in section 3, to

the charges that are found.

2.1 General decomposition

Let us give the decomposition of the l1 representation of E11 in terms of its AD−1 and

E11−D sub-algebras. The details of this decomposition can be found in [11].

To find the l1 representation of AD−1⊗E11−D we delete the node labelled D, in figure 3,

to obtain, For example, to find representations of A4⊗E6 we delete the fifth node. The two

deleted roots may be expressed in terms of vectors in the root space of E11 with components

orthogonal to the vectors in the remaining root space after deletion of nodes ∗ and D. We

carry out the decomposition to AD−1 ⊗ E11−D by expressing the D’th root, αD, in the

form,

αD = −ν + x, ν = −
i=11
∑

i=1,i6=D

λi(A(E11))iD (2.2)

Where (A(E11))iD is the i,D’th component in the Cartan matrix of E11, x is a vector in

the root lattice orthogonal to all the remaining roots after the deletion of αD, and now λi

for i = 1 . . . D − 1 are the fundamental weights of AD−1, and when i = (D + 1) . . . 11 they

are fundamental weights of E11−D. Denoting the fundamental weights of the decomposed
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E11 by li we have,

lD =
1

x2
x

li = λ
(r)
i − < ν, λ

(r)
i >

x2
x (2.3)

Where r is either 1, referring to the AD−1 sub-algebra, or 2, referring to the E11−D sub-

algebra. In this notation,

α∗ = −λ
(1)
1 −

< λ
(1)
1 , λ

(1)
D−1 >

x2
x + y (2.4)

We now return to our consideration of E12, a general root of which is given by,

β = m∗α∗ + mDαD +
11

∑

i=1,i6=D

miαi (2.5)

For a positive root, m∗, mD and mi are positive integers. Substituting our expressions for

α∗ and αD, we obtain,

β = m∗y +

(

mD − m∗

< λ
(1)
1 , λ

(1)
D−1 >

x2

)

x −
∑

(r=1,2)

Λ(r) (2.6)

Where,

Λ(r) = −
11

∑

i=1,i6=D

m
(r)
i α

(r)
i + mDν(r) + m∗λ

(r)
1 δ(r,1) (2.7)

Adopting the notation m
(1)
i = mi, m

(2)
i = ni, λ

(1)
i = µi and λ

(2)
i = λi, we have,

Λ(1) = −
D−1
∑

i=1

miα
(1)
i + mDµD−1 + m∗µ1 ≡

D−1
∑

i

qiµi

Λ(2) = −
11−D
∑

i=1

niα
(2)
i + mDλ1 ≡

11−D
∑

i

piλi (2.8)

Taking the inner product with µj and λj respectively we obtain expressions for the root

coefficients, ni and mi,

AD−1 : −mj =
∑

i

qi < µi, µj > −mD < µD−1, µj > −m∗ < µ1, µj > (2.9)

E11−D : −nj =
∑

i

pi < λi, λj > −mD < λ1, λj >

We make use of formulae for the inner products of the fundamental weights of E11−D

derived in appendix A of reference [11],

λi =











µ̂i + 3i
D−2z, i = 1, . . . , 8 − D

µ̂i + (8−D)(11−D−i)
D−2 z, i = 9 − D, 10 − D

(11−D)
(D−2) z, i = 11 − D

(2.10)
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These weights are derived by deleting the n’th node with respect to an En diagram, z is the

vector in the root space corresponding to the linear independence of the n’th node and µ̂i

are the weights of the An−1 subalgebra, where n = 11 − D. We note that z2 = D−2
11−D

and,

λ2
1 =< µ̂1, µ̂1 > +

9

(D − 2)(11 − D)
=

D − 1

D − 2
(2.11)

Consequently,

α2
D = x2 + µ2

D−1 + λ2
1 = x2 +

D − 1

D
+

D − 1

D − 2
(2.12)

Normalising α2
D = 2 gives,

x2 =
−2

D(D − 2)
(2.13)

We note that the vector x is given explicitly in our basis by:

x =
1

D
(e1 + · · · eD) +

1

D − 2
(eD+1 + · · · e11) (2.14)

2.2 Rank p charges

We commence by looking for p-brane charges, that is rank p charges with all indices in the

spacetime algebra, Za1...ap . This corresponds to a representation of the AD−1 sub-algebra

with highest weight µD−p, where we recall that µi are the fundamental weights of AD−1.

The condition we must satisfy is that

∑

i

qiµi = µD−p (2.15)

A µD−p weight in the AD−1 sub-algebra of our decomposition leads to constraints upon

the values to be taken by the root coefficient mD.

We are interested in the decomposition of the l1 representation of E11 and as such we

take m∗ = 1 and from the AD−1 equation in (2.9) we obtain,

− mj = < µ(D−p), µj > −mD < µ(D−1), µj > − < µ1, µj > (2.16)

=

{

(D − p − 1) − j
D

(D − p − 1 + mD), j ≥ (D − p)

−1 + j
D

(p + 1 − mD), j ≤ (D − p)
(2.17)

Since −mj must be integer valued and negative we find a simple set of solutions for mD

having the form,

mD = p + 1 + kD (2.18)

Where k is a constant bounded from below because m1 ≥ 1, implying that k ≥ 0. The

solution corresponds in the algebra to mD adjoint actions of a generator Ra with the

translation generator Pc. The resulting generator in the algebra has mD − 1 contravariant

indices. Let us denote the indices by #, then,

# ≡ mD − 1 = p + kD (2.19)
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The variable k corresponds to blocks of D antisymmetrised indices in the SL(D) algebra,

and indicates the occurrence of trivial representations of SL(D). By setting k = 0 we may

neglect these representations and simplify the algebra.

Having found a criterion for mD corresponding to a p-brane charge in the AD−1 sub-

algebra, we now turn our attention to restrictions on specific weights of the E11−D sub-

algebra consistent with the values of mD corresponding to a rank p charge. We commence

by finding conditions for representations of single fundamental weights of E11−D, λi, for

which we set
∑

i piλi = λi in (2.9) and making use of equation (2.10) we find,

− nj = < λi, λj > −mD < λ1, λj > (2.20)

=























































































































i ≤ 8 − D



















i − mD + j
D−2(i − mD), j ≤ 8 − D, i ≤ j

j − mD + j
D−2(i − mD), j ≤ 8 − D, i ≥ j

2(11−D−j)
D−2 (i − mD), j = 9 − D, 10 − D

3
D−2(i − mD), j=11-D

i = 9 − D, 10 − D























































−mD + j
D−2(2(11 − D − i) − mD),

j ≤ 8 − D
11−D−j

D−2 ((8 − D)2 − i(6 − D) − 2mD),

j = 9 − D, 10 − D, i ≤ j
1

D−2(4(11 − D − i) − 2mD),

j = 9 − D, 10 − D, i ≥ j
1

D−2((8 − D)(11 − D − i) − 3mD),

j = 11 − D

i = 11 − D











−mD + j
D−2(3 − mD), j ≤ 8 − D

11−D−j
D−2 (8 − D − 2mD), j = 9 − D, 10 − D
1

D−2(11 − D − 3mD), j = 11 − D

The simplest case with a solution is dependent upon the choice of fundamental weight λi

and is

mD =











i + l(D − 2), i ≤ 8 − D

2(11 − D − i) + l(D − 2), i = 9 − D, 10 − D

3 + l(D − 2), i = 11 − D

(2.21)

Where l is a positive integer or zero, which indicates trivial representations of E11−D.

Substituting the solution for mD into the expression for the simple root coefficients, nj,
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given above we have,

−nj = < λi, λj > −mD < λ1, λj > (2.22)

=























































































































i ≤ 8 − D



















−l(D − 2) − lj, j ≤ 8 − D, i ≤ j

j − i − l(D − 2) − jl j ≤ 8 − D, i ≥ j

−2l(11 − D − j), j = 9 − D, 10 − D

−3l, j = 11 − D

i = 9 − D, 10 − D























































−2(11 − D − i) − l(D − 2) − lj,

j ≤ 8 − D

(11 − D − j)((D − 10) + (2l + i)),

j = 9 − D, 10 − D, i ≤ j

−2l,

j = 9 − D, 10 − D, i ≥ j

(−11 + D + i − 3l),

j = 11 − D

i = 11 − D











−mD − jl, j ≤ 8 − D

(11 − D − j)(−1 − 2l), j = 9 − D, 10 − D

−1 − 3l, j = 11 − D

The dependence on the parameter l is made manifest and we see that l ≥ 0. Notice that

when E11−D is decomposed into representations of SL(11−D) by deleting node (11−D),

the parameter l indicates blocks of 11−D antisymmetrised indices. Explicitly, deletion of

node (11 − D) together with the deletion of node D leads to tensors with 3n11−D − mD

which we denote # so that,

# =











−i + l(11 − D), i ≤ 8 − D

(11 − D − i) + l(11 − D) i = 9 − D, 10 − D

l(11 − D) i = 11 − D

(2.23)

This allows us to see that l controls the appearance of blocks of 11 − D antisymmetrised

indices. By setting l = 0 we disregard the trivial representations of E11−D. We note the

subtlety that a trivial representation in the E11−D algebra, after the action of the local

sub-group, may give rise to non-trivial representations in the spacetime SL(D) algebra and

a non-trivial representation of E11−D, we will discuss this possibility in section 2.6.

We choose values of mD which give a rank p charge in the AD−1 sub-algebra and then

read off the value of the corresponding fundamental weight in the E11−D sub-algebra. This

amounts to equating our two conditions for mD, equations (2.18) and (2.21),

p =











i + l(D − 2) − kD − 1, i ≤ 8 − D

2(11 − D − i) + l(D − 2) − kD − 1, i = 9 − D, 10 − D

2 + l(D − 2) − kD, i = 11 − D

(2.24)

In particular for l = k = 0 we find the charge content indicated in table 1, where the

charges are indicated by SL(D) ⊗ SL(11 − D) tensors. We use the index ai to indicate an

index in the spacetime associated to the weight of AD−1 being considered, and the index ji
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Index of λi Weight of E11−D ⊗ AD−1 Highest Weight Charge

i ≤ 8 − D λi ⊗ µD−i Za1...ai−1j1...j11−D−i

i = 9 − D λ9−D ⊗ µD−3 Za1a2a3j1j2

i = 10 − D λ10−D ⊗ µD−1 Za1j1

i = 11 − D λ11−D ⊗ µD−2 Za1a2j1j2j3

Table 1: Charges associated to fundamental weights of E11−D upon dimensional reduction indi-

cated by SL(D) ⊗ SL(11 − D) tensors

Figure 4: The Dynkin diagram of E11−D.

to indicate internal coordinates coming from the representation of E11−D that the charge

transforms under. The fundamental weights of E11−D belong to a given representation of

SL(11−D), so we may label them by the highest weight of their SL(11−D) representation.

For example, if we consider the representation of E11−D whose highest weight is λ11−D

it belongs to the representation of SL11−D with highest weight Z(9−D)(10−D)(11−D). In

table 1 it is the highest weight of SL(11 − D) that we have used to indicate the E11−D

representation.

For representations of E11−D the internal indices in the decomposition to SL(D) ⊗
SL(11 − D) tensors will vary throughout the multiplet, but the spacetime indices will

remain unaltered. Let us consider the example of the particle charge multiplet in D = 3

which is the first fundamental representation of E8 with highest weight, λ1. The 248 has

SL(D) ⊗ SL(11 − D) tensors:

Pj(8), Zj1j2(28), Zj1...j5(56), Zj1...j7,k(63),

Zj1...j8(1), Zj1...j3(56), Zj1...j6(28), Zj(1) (2.25)

It is convenient to indicate the tensor charge associated to just the highest weight in the

representation, it is this that is indicated by the charges in table 1. From table 1 we read

that such a charge Za1j1 is associated to the (10-D)’th fundamental representation (with

highest weight λ10−D) of E11−D, and so on for the other charge multiplets. It may be

useful to associate the various charge multiplets associated to a fundamental weight of

E11=D with their nodes on the E11−D Dynkin diagram,

For the case of D = 3 [11], the charges associated to the fundamental weights of

nodes 11−D, 10−D and 1 of E11−D are the highest weights of the membrane, string and

particle multiplets [9]. The set of charges up to rank D − 1 where D ranges from three

to eight derived from the l1 multiplet is shown in table 2. Many of the charge multiplets

indicated therein are associated to representations of E11−D whose highest weight is a sum
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D G Z Za Za1a2 Za1...a3 Za1...a4 Za1...a5 Za1...a6 Za1...a7

8 SU(3) ⊗ SU(2) (3,2) (3,1) (1,2) (3,1) (3,2) (1,3) (3,2) (6,1)

(8,1) (6,2) (18,1)

(1,1) (3,1)

(6,1)

(3,3)

7 SU(5) 10 5 5 10 24 40 70 -

1 15 50 -

10 45 -

5 -

6 SO(5, 5) 16 10 16 45 144 320 - -

1 16 126 - -

120 - -

5 E6 27 27 78 351 1728 - - -

1 27 351 - - -

27 - - -

4 E7 56 133 912 8645 - - - -

1 56 1539 - - - -

133 - - - -

1 - - - -

3 E8 248 3875 147250 - - - - -

1 248 30380 - - - - -

1 3875 - - - - -

248 - - - - -

1 - - - - -

Table 2: Charge multiplet representations of the group, G, from the l1 representation of E11 in

3 ≤ D ≤ 8.

of fundamental weights. We deal with these cases in section 2.6, where we extract the full

content of table 2 from the l1 algebra.

2.3 The particle multiplet

We identified the highest weight of this multiplet above, and we now discuss the identifi-

cation of the weights of the l1 representation associated to particle, or zero brane, charges

in detail. The particle charge multiplet will consist of objects having no spacetime indices

(ai), and a set of internal indices (ji). From table 1 we see that this charge corresponds to

the representation with highest weight (λ1 ⊗ µD−1), having a highest weight charge indi-

cated by an SL(11−D) tensor, Zj1...j10−D , i.e. it has only internal indices and it transforms

in the first fundamental representation of the E11−D sub-group.

To find the roots explicitly we recall that this is the representation whose highest weight

is the first fundamental weight of E11−D, so that in D = 3 it is the 248 of E8, in D = 4 it

is the 56 of E7 and so on. In section 2.2 the condition on the highest weight representation
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E12 root Charge Dimension of SL(8) tensor Mass (highest weight)

(15, 07) Pj 8 1
R4

(19, 02, 1) Zj1j2 28 R10R11
l3p

(17, 2, 3, 2, 1, 2) Zj1...j5 56 R7...R11
l6p

(15, 2, 3, 4, 5, 6, 4, 2, 3) Zj1...j8 1 V
l9p

(15, 2, 3, 4, 5, 3, 1, 3) Zj1...j7,k 63 V R11
R4l9p

(14, 2, 3, 4, 5, 6, 4, 2, 4) Zj1...j8,k1...k3 56 V R9...R11
l12p

(14, 2, 3, 5, 7, 9, 6, 3, 5) Zj1...j8,k1...k6 28 V R6...R11
l15p

(14, 3, 5, 7, 9, 11, 7, 3, 6) Zj1...j8,k 8 V 2R11
l18p

Table 3: The particle charge multiplet in D = 3/The 248 of E8.

of SL(D) has been written in terms of p, where the charge multiplet’s highest weight is the

charge associated to a p-brane. From equation (2.16), with p = 0 for the particle charge

multiplet we find that,

mj = 1 j = 1, . . . D − 1 (2.26)

From equation 2.18 we have mD = 1. Since we are considering the l1 representation m∗ = 1

then the particle multiplet contains roots with root coefficients (1D+1,mD+1, . . . m11). We

use the superscript notation as a shorthand to indicate that a number of sequential roots

share the same coefficient, e.g.

(1D+1,mD+1, . . . m11) ≡ α∗ + α1 + · · · + αD +

11
∑

i=D+1

miαi (2.27)

The simple root coefficients {mi>D} correspond to the weights of the first fundamental

representation of E11−D which we will identify. For the reduction to D dimensions we

should find the particle multiplet being made up of roots whose first D+1 root coefficients

are 1’s. The most complicated case is that of the reduction to D = 3 which has been

studied already in [11], and the l1 representations have been shown to form the 248 of E8.

In addition to this condition we must identify the root vectors of the fundamental repre-

sentation of E8 amongst these roots. By finding all roots of the form (1D+1,mD+1, . . . m11)

we identify the 248 ⊕ 1 indicated in table 2. To distinguish the roots of 248 we must

identify the root vectors of the fundamental 248 amongst the candidate roots. In more

complicated cases to follow this process will be less trivial than in the present example.

From the l1 representation of E11 we can read off the charges in the particle multiplet and

these are listed in table 3. In section 3 of this paper we will give a formula, equation (3.6),

relating a root in the E12 lattice with a mass. In table 3 we give the result of applying

this formula to the roots in the table, the resulting masses exactly match those found by

U-duality [8, 9].
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E12 root Charge Dimension of SL(7) tensor Mass

(15, 07) Pj 7 1
R5

(19, 0, 0, 1) Zj1j2 21 R10R11
l3p

(17, 2, 3, 2, 1, 2) Zj1...j5 21 R7...R11

l6p

(15, 2, 3, 4, 5, 3, 1, 3) Zj1...j7,k 7 V R11
l9p

Table 4: The particle charge multiplet in D = 4/The 56 of E7.

E12 root Charge Dimension of SL(6) tensor Mass

(16, 06) Pj 6 1
R6

(19, 0, 0, 1) Zj1j2 15 R10R11

l3p

(17, 2, 3, 2, 1, 2) Zj1...j5 6 R7...R11
l6p

Table 5: The particle charge multiplet in D = 5/The 27 of E6.

In table 3 we have used V to indicate RD+1RD+2 . . . R11 indicating the volume of the

internal space. From table 3 we can identify generators which commute with each other

to form generators proportional to multiple copies of the volume form(ǫµ1...µ11−D ). We

call such pairs of generators dual. The Young tableaux of a generator and its dual may

be combined to form a rectangular tableau whose height is the dimension of the internal

space. Such a Young tableau is proportional to multiple volume tensors. For example, in

table 3 the generators at levels 0, 1, 2 are dual to those at 4, 5, 6, and those at level 3 are

self-dual, that is

[Pj , Z
l1...l8,k1...k8,j] ∝ ǫ2, [Z l1l2, Zj1...j8,k1...k6 ] ∝ ǫ2, [Zj1...j5, Z l1...l8,k1...k3] ∝ ǫ2

[Zj1...j8 , Zk1...k8] ∝ ǫ2, [Zj1...j7,k, Z l1...l7,m] ∝ ǫ2 (2.28)

We are identifying a bilinear Casimir for the representation. By using the mass formula

(to be derived in section 3) one can see that the mass associated to a generator, M, and

the mass associated to its dual generator, M′, multiply to give an invariant squared mass,

MM′ = M2, for the representation. For the 248 shown in table 3 the invariant mass

squared is:

M2
248

∼ V 2

l18p

(2.29)

Let us look at the reduction to D = 4 where the particle multiplet should belong to

representations of E7. From tables of E12 roots [16], we find the l1 content listed in table 4.

By identifying the dual generators in table 4 one can associate an invariant mass squared

to the multiplet, M2
56

∼ V
l9p

. In the reduction to D = 5 we look for the 27 of E6, and

the corresponding roots are in table 5. For the reduction to D = 6 we look for the 16 of

SO(5, 5). From the l1 we find the states of table 6. We repeat the process for D = 7 where

we look for the 10 of SU(5), the appropriate roots are listed in table 7. The formulae used

in this section are even robust up to D = 8, where we identify the (3,2) of SU(3) ⊗ SU(2)
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E12 root Charge Dimension of SL(5) tensor Mass

(17, 05) Pj 5 1
R7

(19, 0, 0, 1) Zj1j2 10 R10R11
l3p

(17, 2, 3, 2, 1, 2) Z 1 R7...R11

l6p

Table 6: The particle charge multiplet in D = 6/The 16 of SO(5, 5).

E12 root Charge Dimension of SL(4) tensor Mass

(18, 03) Pj 4 1
R8

(19, 0, 0, 1) Zj1j2 6 R10R11
l3p

Table 7: The particle charge multiplet in D = 7/The 10 of SL(5)

D Z Zj Zj1j2 Zj1...j3 Zj1...j4 Zj1...j5 Zj1...j6 Zj1...j7

3 8(0)

28(1) 56(2)

64(3) 56(4) 28(5)

8(6)

4 7(0) -

21(1) 21(2) -

7(3) -

5 6(0) - -

15(1) 6(2) - -

6 5(0) - - -

10(1) - - -

1(2) - - -

7 4(0) - - - -

6(1) - - - -

8 3(0) - - - - -

3(1) - - - - -

Table 8: The particle charge multiplets in 3 ≤ D ≤ 8.

contained in the l1 representation from the roots (19, 0, 0, 1) and (19, 03), associated to

generators Zj1j2 and Pj , both having dimension three.

We summarise the appearance of the particle multiplet from the l1 representation in

table 8. The table shows the dimension of SL(11 − D) tensors together with the level

the generator appears at in the decomposition, so that X(l) indicates a tensor carrying X

degrees of freedom appearing in the decomposition at level l. The columns indicate the

number of indices in the charge modulo blocks of 11 − D indices.
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2.4 The string multiplet

The string multiplet contains charges with one spacetime index. From table 1 we see that

such charges are associated to the representation of E11−D with highest weight λ10−D. In

D = 3 this is the 3875 of E8, in D = 4 it is the 133 of E7 and so on. From section 2.2.

we recall that the string multiplet corresponds to 1-brane charges, by putting p = 1 and

k = 0 in equation (2.18) we find the simple root coefficient mD = 2 for string charges.

From equation (2.16), with p = 1 for the string, we find that,

mj = 1 j = 1, . . . D − 1 (2.30)

The candidate roots in the E12 lattice corresponding to the string multiplet have simple

root coefficients (1D, 2,mD+1, . . . m11). The mi>D take values which vary according to the

weight vector of the representation of E11−D with highest weight λ10−D.

Using equation (2.20) we find the root in the E12 lattice corresponding to the weight

µ10−D of E11−D (p10−D = 1 and all other pi = 0), that is the highest weight of the

representation we are seeking to identify, is (1D, 29−D, 0, 0, 1). This root does not appear in

the l1 representation however, as discussed in [11], it is related to the root (19, 0, 0, 1) in the

l1 representation, with charge Z8.11 by a series commutators with the generators KD
D+1,

KD+1
D+2, . . . K7

8, giving the charge ZD.11. This charge has one compact index (j=11)

and one non-compact index (a=D), and so is a component of a string charge Zaj . We can

also apply the generators Ka
j to the roots of the particle multiplet and find string charges

in a similar manner. To commence we rediscover the E12 roots of the string multiplet in

D = 3. These roots were originally given in [11] and we list them in table 9 together the

associated masses given by equation (3.6) which gives expressions in agreement with the

string multiplet listed explicitly in appendix B of [9]. The procedure of searching the low

levels of the l1 representation for roots with root coefficients of the form (13, 2,m4, . . . m11)

reproduces the 3875 ⊕ 248 ⊕ 1 of E8, from which the 3875 can be identified. It is a simple

matter to pair the dual generators in the string multiplet, to find an invariant mass squared

for the multiplet:

M2
3875

∼ R2
aV

4

l36p

(2.31)

We find the string multiplet in D = 4 has E12 roots with root coefficients (14, 2,m5 . . . m11).

In D = 4 we look for the 133 of E7 and the corresponding roots from the l1 are listed in

table 10. The invariant mass squared for the multiplet is,

M2
133 ∼ R2

aV
2

l18p

(2.32)

In D = 5 we look for the 27 of E6. This corresponds to roots of the form (15, 2,m6 . . . m11),

which we list in table 11. In D = 6 we look for the 10 of SO(5, 5). This corresponds to

roots of the form (16, 2,m7 . . . m11), which we list in table 12. The associated invariant

mass squared for the representation in table 12 is

M2
10 ∼ R2

aV

l9p
(2.33)
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E12 Root Charge Dimension of SL(8) tensor Mass

(13, 26, 0, 0, 1) Za,j1 8 R3R11

l3
p

(13, 25, 3, 2, 1, 2) Za,j1...j4 70 R3R8...R11

l6
p

(13, 23, 3, 4, 5, 3, 1, 3) Za,j1...j6,k 216
R3R6...R10R2

11

l9
p

(13, 22, 3, 4, 5, 6, 4, 2, 3) Za,j1...j7 8 R3R5...R11

l9
p

(13, 22, 3, 4, 5, 6, 4, 2, 4) Za,j1...j7,k1...k3 420 R3V R9R10R11

R4l12
p

(13, 2, 3, 4, 5, 6, 7, 4, 1, 4) Zaj1...j8,k1k2 28
R3V (R10R11)2

l12
p

(13, 2, 3, 4, 5, 6, 7, 4, 2, 4) Zaj1...j8,(k1,l1) 36
R3V R2

11

l12
p

(13, 22, 3, 5, 7, 9, 6, 3, 5) Zaj1...j7,k1...k6 168 R3V R6...R11

R4l15
p

(13, 2, 3, 4, 5, 7, 9, 6, 3, 5) Zaj1...j8,k1...k5 56 R3V R7...R11

l15
p

(13, 2, 3, 4, 5, 6, 8, 5, 2, 5) Zaj1...j8,k1...k4,l1 504
R3V R8...R10R2

11

l15
p

(13, 2, 4, 6, 8, 10, 12, 8, 4, 6) Zaj1...j8,k1...k8 1 R3V 2

l18
p

(13, 2, 3, 5, 7, 9, 11, 7, 3, 6) Zaj1...j8,k1...k7,l1 63 R3V 2R11

R4l18
p

(13, 2, 3, 4, 6, 8, 10, 6, 3, 6) Zaj1...j8,k1...k6,l1l2 720 R3V 2R10R11

R4R5l18
p

(13, 2, 3, 5, 7, 9, 11, 7, 3, 6) Zaj1...j8,k1...k7,l1 63 R3V 2R11

R4l18
p

(13, 2, 3, 5, 7, 9, 12, 8, 4, 7) Zaj1...j8,k1...k7,l1...l4 504 R3V 2R8...R11

R4l21
p

(13, 2, 4, 6, 8, 10, 12, 8, 4, 7) Zaj1...j8,k1...k8,l1...l3 56 R3V 2R9...R11

l21
p

(13, 2, 4, 6, 8, 10, 12, 7, 3, 7) Zaj1...j8,k1...k8,l1l2,m1 168
R3V 2R10R2

11

l21
p

(13, 2, 3, 6, 9, 12, 15, 10, 5, 8) Zaj1...j8,k1...k7,l1...l7 36 R3V 3

R2
4
l24
p

(13, 2, 4, 6, 9, 12, 15, 10, 5, 8) Zaj1...j8,k1...k8,l1...l6 28 R3V 3

R4R5l24
p

(13, 2, 4, 6, 8, 11, 14, 9, 4, 8) Zaj1...j8,k1...k8,l1...l5,m1 420 R3V 3R11

R4R5R6l24
p

(13, 2, 5, 8, 11, 14, 17, 11, 5, 9) Zaj1...j8,k1...k8,l1...l8,m1 8 R3V 3R11

l27
p

(13, 2, 4, 7, 10, 13, 16, 10, 5, 9) Zaj1...j8,k1...k8,l1...l7,m1m2 216 R3V 3R10R11

R4l27
p

(13, 2, 5, 8, 11, 14, 18, 12, 6, 10) Zaj1...j8,k1...k8,l1...l8,m1...m4 70 R3V 3R8...R11

l30
p

(13, 2, 5, 9, 13, 17, 21, 14, 7, 11) Zaj1...j8,k1...k8,l1...l8,m1...m7 8 R3V 4

R4l33
p

Table 9: The string charge multiplet in D = 3/The 3875 of E8.

E12 root Charge Dimension of SL(7) tensor Mass

(14, 25, 0, 0, 1) Zaj1 7 R4R11
l3p

(14, 24, 3, 2, 1, 2) Zaj1...j4 35 R4R8...R11
l6p

(14, 22, 3, 4, 5, 3, 1, 3) Zaj1...j6,k 49 R4V R11
R5l9p

(14, 2, 3, 4, 5, 6, 4, 2, 4) Zaj1...j7,k1...k3 35 R4V R9...R11
l12p

(14, 2, 3, 5, 7, 9, 6, 3, 5) Zaj1...j7,k1...k6 7 R4V 2

R5l15p

Table 10: The string charge multiplet in D = 4/The 133 of E7.

In D = 7 we look for the 5 of SL(5). This corresponds to roots of the form

(17, 2,m8 . . . m11), which we list in table 13. In D = 8 we find the (1,3) of SU(2)× SU(3).

This corresponds to roots of the form (18, 2,m9 . . . m11), and we find only the root with
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E12 root Charge Dimension of SL(6) tensor Mass

(15, 24, 0, 0, 1) Zaj1 6 R5R11
l3p

(15, 23, 3, 2, 1, 2) Zaj1...j4 15 R5R8...R11
l6p

(15, 2, 3, 4, 5, 3, 1, 3) Zaj1...j6,k1 6 R5V R11
l9p

Table 11: The string charge multiplet in D = 5/The 27 of E6.

E12 root Charge Dimension of SL(5) tensor Mass

(16, 23, 0, 0, 1) Za,j 5 R6R11
l3p

(16, 22, 3, 2, 1, 2) Zaj1...j4 5 R6R8...R11
l6p

Table 12: The string charge multiplet in D = 6/The 10 of SO(5, 5).

E12 root Charge Dimension of SL(4) tensor Mass

(17, 22, 0, 0, 1) Za,j 4 R7R11
l3p

(17, 2, 3, 2, 1, 2) Za,j1...j4 1 R7V
l6p

Table 13: The string charge multiplet in D = 7/The 5 of SL(5).

D Za Zaj Zaj1j2 Zaj1...j3 Zaj1...j4 Zaj1...j5 Zaj1...j6 Zaj1...j7

3 8(1) 70(2) 224(3)

484(4) 728(5)

847(6) 728(7) 484(8)

224(9) 70(10) 8(11)

4 7(1) 35(2) -

49(3) 35(4) 7(5) -

5 6(1) 15(2) - -

6(3) - -

6 5(1) 5(2) - - -

7 4(1) - - - -

1(2) - - - -

8 3(1) - - - - -

Table 14: The string charge multiplets in 3 ≤ D ≤ 8.

simple root coefficients (18, 2, 0, 0, 1), corresponding to a charge Zaj1 of dimension 3 and

tension R8R11
l3p

. The appearance of the string multiplet in the l1 representation is sum-

marised for 3 ≤ D ≤ 8 in table 14.

In addition to the string and particle multiplets, we may also find multiplets associated

with the membrane charge, a threebrane charge, a fourbrane charge and other charges up

to that of a D − 1-brane, as discussed in [8, 9]. One might also find a fivebrane multiplet

whose highest weight is µD−5⊗2λ11−D, indeed one may find multiplets corresponding to a
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variety of exotic charges whose interpretation is obscure, but are all a natural consequence

of the conjectured eleven dimensional E11 symmetry. In the next section we will consider

the membrane multiplets in detail, and in section 2.6 we will find the remaining charge

multiplets shown in table 2.

2.5 The membrane charge multiplet

Until this point we have focussed on reproducing the charge multiplets previously found

from U-duality. The membrane charge multiplet has not been given in the literature

previously. Here we treat the membrane charge in the same way as the particle and string

charges and we apply our method to find the membrane multiplet in three, four, five, six,

seven and eight dimensions. For a membrane charge we take p = 2 in equation (2.18) and

look for solutions when l = k = 0. Using equation (2.16) we look for roots of the form

(1(D−1), 2, 3,mD+1, . . . m11) in the tables of E12 roots showing the l1 representation of E11

which are listed at length in [16].

Level Charge Dimension of SL(8) tensor Mass

1 Zab 1 R2R3
l3p

2 Zabj1...j3 56 R2R3R9...R11

l6p

3 Zabj1...j6 28 R2R3R6...R11
l9p

Zabj1...j5,k1 420
R2R3R7...R10R2

11
l9p

4 Zabj1...j6,k1...k3 1344 R2R3V R9...R11
R4R5l12p

Zabj1...j7,k1k2 216 R2R3V R10R11
R4l12p

2Zabj1...j8,k1 2 × 8 R2R3V R11
l9p

2Zabj1...j7,k1,l1 280
R2R3V R2

11
R4l9p

5 Zabj1...j6,k1...k6 336 R2R3V 2

(R4R5)2l15p

Zabj1...j7,k1...k5 378 R2R3V R7...R11
R4l15p

2Zabj1...j8,k1...k4 2 × 70 R2R3V R8...R11
l15p

Zabj1...j7,k1...k4,l1 3584
R2R3V R8...R10R2

11
R4l15p

2Zabj1...j8,k1...k3,l1 2 × 378
R2R3V R9R10R2

11
l15p

6 2Zabj1...j7 2 × 8 R2R3V 2

R4l18p

Zabj1...j7,k1...k7,l1 280 R2R3V 2R11
R4R5l18p

Zabj1...j7,k1...k6,l1l2 4200 R2R3V 2R10R11

R2
4R5l18p

Zabj1...j8,k1...k4,l1...l3 2352 R2R3V R8(R9...R11)2

l18p

Zabj1...j8,k1...k5,l1l2 1344 R2R3V 2R10R11
R4R5R6l18p

4Zabj1...j8,k1...k6,l1 4 × 216 R2R3V 2R11
R4R5l18p

Zabj1...j8,k1...k5,l1,m1 1800
R2R3V 2R2

11
R4R5R6l18p

Table 15 — Continued on next page
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Table 15 — Continued from previous page

Level Charge Dimension of SL(8) tensor Mass

7 Zabj1...j7,k1...k7,l1...l4 2100 R2R3V 2R8...R11

R2
4l21p

3Zabj1...j8,k1...k7,l1...l3 3 × 420 R2R3V 2R9R10R11
R4l21p

3Zabj1...j8,k1...k8,l1l2 3 × 28 R2R3V 2R10R11
l21p

2Zabj1...j8,k1...k6,l1...l4 2 × 1512 R2R3V 2R8R9R10R11
R4R5l21p

2Zabj1...j8,k1...k7,l1...l2,m1 2 × 1280
R2R3V 2R10R2

11
R4l21p

3Zabj1...j8,k1...k8,l1,m1 3 × 36
R2R3V 2R2

11
l21p

Zabj1...j8,k1...k6,l1...l3,m1 8820
R2R3V 2R9R10R2

11
R4R5l21p

8 Zabj1...j7,k1...k7,l1...l7 120 R2R3V 3

R3
4l24p

3Zabj1...j8,k1...k7,l1...l6 3 × 168 R2R3V 3R11

R2
4R5l24p

3Zabj1...j8,k1...k8,l1...l5 3 × 56 R2R3V 3

R4R5R6l24p

2Zabj1...j8,k1...k7,l1...l5,m1 2 × 2800 R2R3V 3R10R11

R2
4R5R6l24p

Zabj1...j8,k1...k8,l1...l3,m1m2 1008
R2R3V 2R9R10R3

11
l24p

4Zabj1...j8,k1...k8,l1...l4,m1 4 × 504
R2R3V 2R8R9R10R2

11
l24p

4Zabj1...j8,k1...k6,l1...l6,m1 2520 R2R3V 3R11
R4R5l24p

Zabj1...j8,k1...k7,l1...l4,m1m2 10584 R2R3V 3R10R11

R2
4R5R6R7l24p

Zabj1...j8,k1...k8,l1...l3,m1,n1 1512 R2R3V 3R10R11

R2
4R5R6R7l24p

9 Zabj1...j8,k1...k8,l1...l8,m1...m8 1 R2R3V 3

l27p

2Zabj1...j8,k1...k7,l1...l7,m1m2 2 × 945 R2R3V 3R9R10R11

R2
4R5l27p

5Zabj1...j8,k1...k8,l1...l7,m1 5 × 63 R2R3V 3R11

R4l27p

Zabj1...j8,k1...k8,l1...l5,m1...m3 2352 R2R3V 3R9R10R11
R4R5R6l27p

4Zabj1...j8,k1...k8,l1...l6,m1m2 4 × 720 R2R3V 3R10R11
R4R5l27p

Zabj1...j8,k1...k7,l1...l6,m1...m3 7680 R2R3V 3R9R10R11

R2
4R5l27p

2Zabj1...j8,k1...k7,l1...l7,m1m2 2 × 945 R2R3V 3R10R11

R2
4l27p

Zabj1...j8,k1...k8,l1...l4,m1...m4 1764 R2R3V 4

(R4...R7)2l27p

Zabj1...j8,k1...k8,l1...l6,m1,n1 7680
R2R3V 3R10R2

11
R4...R6l27p

Table 15: The membrane charge multiplet in D = 3/The 147250 of E8.

The membrane charge multiplet is a representation of E11−D with highest weight

λ11−D, in D = 3 it is the 147250 of E8, in D = 4 it is the 912 of E7 and so on. In D = 3

the roots in the l1 representation having coefficients of the form (1(D−1), 2, 3,mD+1, . . . m11)

identify the 147250 ⊕ 30380 ⊕ 3875 ⊕ 248 ⊕ 1 of E8 from which we can identify the root

vectors of the 147250 and we list the charges in table 15, where the charges at levels (m11)
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Level Charge Dimension of SL(7) tensor Mass

1 Z
ab 1 R3R4

l3
p

2 Z
ab,j1 ...j3 35 R3R4R9...R11

l6
p

3 Z
ab,j1 ...j6 7 R3R4V

R5l9
p

Z
ab,j1...j5,k 140 R3R4V R11

R5R6l9
p

4 Z
ab,j1...j6,k1...k3 224 R3R4V 2R9R10R11

R2
5
R6R7R8l12

p

Z
ab,j1 ...j7,k1k2 21

R3R4V R2

11

l12
p

Z
ab,k1,l1 28

R3R4V R2

11

l12
p

5 Z
ab,j1...j6,k1...k6 28 R3R4V 2

R2
5
l15
p

Z
ab,j1...j7,k1...k5 21 R3R4V 2

R5R6l15
p

Z
ab,j1 ...j7,k1...k4,l1 224 R3R4V 2R11

R5R6R7l15
p

6 Z
ab,j1 ...j7,k1...k6,l1l2 140 R3R4V 2R11

R5l18
p

Z
ab,j1 ...j7,k1...k7,l1 7 R3R4V 2R11

R5l18
p

7 Z
ab,j1...j7,k1...k7,l1...l4 35 R3R4V 3

R5R6R7l21
p

8 Z
ab,j1...j7,k1...k7,l1...l7 1 R3R4V 3

l24
p

Table 16: The membrane charge multiplet in D = 4/The 912 of E7.

Level Charge Dimension of SL(5) tensor Mass

1 Z
ab 1 R4R5

l3
p

2 Z
ab,j1...j3 20 R4R5R9...R11

l6
p

3 Z
ab,j1...j5,k 36 R4R5V R11

R6l9
p

4 Z
ab,j1...j3 20 R4R5V (R9...R11)

l12
p

5 Z
ab 1 R4R5V 2

l15
p

Table 17: The membrane charge multiplet in D = 5/The 78 of E6.

10 to 17 which are the duals of those at levels 8 to 1 are not shown.

The associated invariant mass squared for the membrane charge multiplet in table 15 is

M2
147250

∼ (RaRb)
2V 6

l54p

(2.34)

In D = 4 we look for roots of the form (13, 2, 3,m5, . . . m11) and find the set of charges

in table 16, which form the 912 of E7. The associated invariant mass squared for the

membrane charge multiplet in table 16 is

M2
912 ∼ (RaRb)

2V 3

l27p

(2.35)

In D = 5 we find the 78 of E6 as shown in table 17. The associated invariant mass squared
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D Z
ab

Z
abj

Z
abj1j2 Z

abj1...j3 Z
abj1...j4 Z

abj1 ...j5 Z
abj1...j6 Z

abj1...j7

3 1(1) 56(2) 420(3)

1856(4) 5152(5) 11696(6)

16408(7) 23472(8)

29128(9) 23472(10) 16408(11)

11696(12) 5152(13) 1856(14)

420(15) 56(16)

1(17)

4 1(1) 35(2) 147(3) -

273(4) 273(5) -

147(6) 35(7) -

1(8)

5 1(1) 20(2) - -

36(3) 20(4) - -

1(5)

6 1(1) 10(2) - - -

5(3) - - -

7 1(1) 4(2) - - - -

8 1(1) - - - - -

1(2) - - - - -

Table 18: The membrane charge multiplets in 3 ≤ D ≤ 8.

for the membrane charge multiplet in table 17 is

M2
78

∼ (RaRb)
2V 2

l18p

(2.36)

We can continue this process and find the 1⊕ 10 ⊕ 5 = 16 of SO(5, 5) in D = 6, the

1 ⊕ 4 = 5 of SL(5) in D = 7 and the 1 ⊕ 1 =(1.22) of SL(3) ⊗ SL(2) in D = 8. We

summarise the appearance of the membrane multiplet charges from the l1 representation

of E11 in table 18.

2.6 p-brane charges associated to general weights of E11−D

In the previous sections we considered representations of AD−1 ⊗ E11−D in the l1 repre-

sentation of E11. The representations of AD−1 had a single set of antisymmetric indices

and corresponded to p-brane charges, the representations of E11−D we considered all had a

highest weight which was a single fundamental weight of E11−D. Now we will continue to

consider p-brane charges in the AD−1 sub-algebra but we will generalise our considerations

of E11−D to include those representations whose highest weight is a sum of fundamental

weights. As we shall see, representations of E11−D, with highest weight more general than a

single fundamental weight, provide a straightforward constraint for the root coefficient mD.

By including the most general highest weight representations of E11−D we will complete

table 2.

So far we have not considered the significance of blocks of (11 − D) indices appearing

in the index structure of the generators in the E11−D sub-algebra. Previously we have

restricted ourselves to the constraint that l = 0 in equation (2.21), implying that we have
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ignored representations of E11−D which are identical up to the ǫj1...j11−D tensor. However

the appearance of a block of (11 −D) indices may be acted upon by the generators of the

A10 sub-algebra of E11 so that a set of trivial internal indices may acquire spacetime indices

and the remaining internal indices form part of a non-trivial representation of E11−D. Let

us consider a generic highest weight representation of E11−D labelled by [p1, p2 . . . p11−D].

Putting this into equation (2.9), where instead of λi we now have
∑

piλi, we find, after

making use of equation (2.10),

−nj =
∑

pi < λi, λj > −mD < λ1, λj > (2.37)

=



































































∑

i≤j ipi+j
∑8−D

i≥j pi−mD+ j
D−2

[

∑8−D
i ipi+4p9−D+2p10−D+3p11−D−mD

]

j ≤ 8−D

1
D−2

[

4
∑

i≤8−D ipi+2(10−D)p9−D+(10−D)p10−D+2(8−D)p11−D−4mD

]

j = 9−D

1
D−2

[

2
∑

i≤8−D ipi+(10−D)p9−D+4p10−D+(8−D)p11−D−2mD

]

j = 10−D

1
D−2

[

3
∑

i≤8−D ipi+2(8−D)p9−D+(8−D)p10−D+(11−D)p11−D−3mD

]

j = 11 − D

We see that we have a general solution giving positive integer values for nj when,

mD =

8−D
∑

i=1

ipi + 4p(9−D) + 2p(10−D) + 3p(11−D) + h(D − 2) (2.38)

Where h is some positive integer, or zero. For this solution we find the simple root coeffi-

cients in E11−D are:

nj =



















∑8−D
i≥j (i − j)pi + 4p9−D + 2p10−D + 3p11−D + hj + h(D − 2) j ≤ 8 − D

2p9−D + p10−D + 2p11−D + 4h j = 9 − D

p9−D + p11−D + 2h j = 10 − D

2p9−D + p10−D + p11−D + 3h j = 11 − D

(2.39)

With these coefficients the full E12 root is:

β = e∗ + k(e1 + · · · + eD−p) + (1 + k)(eD−p+1 + · · · + eD) (2.40)

+

8−D
∑

n=D+1

(

h −
8−D
∑

i=n

pi

)

en + he9 + (h + p9−D)e10 + (h + p9−D + p10−D)e11

Where pi are the Dynkin labels for the E11−D sub-algebra, and p without an index indicates

the corresponding p-brane charge multiplet. We can write the parameter, h, as:

h =
8−D
∑

i=1

pi + C (2.41)
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If we decompose the E11−D representation into SL(11 − D) tensor representations the

number of SL(11−D) indices appearing on generators at level n11−D in the decomposition,

# is given by,

# = 3n11−D − mD =
10−D
∑

i=1

(11 − D − i)pi + C(11 − D) (2.42)

So that C controls the appearance of blocks of (11 − D) indices. We note that the lower

bound on the number of indices, # occurs when n11−D and p1 = mD, this implies that C

is bounded from below by C ≥ −mD. Setting k = 0 we find,

β2 = 1 + p +

8−D
∑

i=1

ip2
i − 2p2

9−D − p2
11−D

+2
∑

i≤j

ipipj − 2p9−Dp10−D − 4p9−Dp11−D − 2p10−Dp11−D (2.43)

−(D − 2)h2 − 2h
8−D
∑

i=1

ipi − 8hp9−D − 4hp10−D − 6hp11−D

Since β2 = 2, 0,−2, . . . equation (2.43) places constraints on which highest weights of E11−D

are present in the l1 representation. Let us see how useful this equation can be by looking

for all the highest weight representations of E11−D appearing in the l1 representation of

E11 for the particle, string and membrane charges.

Consider the particle charge multiplet, having p = 0, and mD = 1, and we will

commence with the D-independent case where h = 0. Earlier we found the particle charge

multiplet associated to the first fundamental representation of E11−D, whose highest weight

is λ1. From equation (2.38) we see that indeed p1 = 1 is the only possible representation,

and from equation (2.43) we find β2 = 2 and so it is present in the l1 representation.

However if we now generalise our considerations to include the cases with h > 0 then from

equation (2.38) we see that in D = 3 a new possible particle charge multiplet appears

associated to a different highest weight of E11−D. In D = 3 we can satisfy mD = 1 with

pi = 0, h = 1, and from equation (2.43) we see this corresponds to a root of E12 with a

squared length of zero. We now identify the complete multiplet associated to this particle

charge by looking for roots having the form (14,mD+1, . . . ,m11). The highest weight root

has β2 = 0 and under the action of the SL(11) sub-algebra the root length squared may

be lowered or held constant, but not raised - due to the Serre relations. Consequently

the highest weight representation may be found among the set of roots having the form

(14,mD+1, . . . ,m11) and subject to β2 ≤ 0. The extra particle multiplet in D = 3 is given in

table 19. From table 19 associated invariant mass squared for the trivial representation is:

M2
1
∼ V 2

l18p

(2.44)

Let us repeat this process for the string charge multiplets, commencing as before with the

case h = 0. Putative string charge multiplets have p = 1 and mD = 2. From equation (2.38)
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E12 root Charge Dimension of SL(8) tensor Mass

(15, 2, 3, 4, 5, 3, 1, 3) Z 1 R4...R11
l9p

Table 19: A second particle charge multiplet in D = 3/The 1 of E8.

we find three possible highest weight representations:

(p1 = 2), (p2 = 1), (p10−D = 1) (2.45)

However from equation (2.43) (with h = 0) we notice that we face the restriction

2 ≥ 1 + p +

8−D
∑

i=1

ip2
i − 2p2

9−D − p2
11−D

+2
∑

i≤j

ipipj − 2p9−Dp10−D − 4p9−Dp11−D − 2p10−Dp11−D (2.46)

Bearing in mind that for the string p + 1 = 2 we observe that the remaining positive terms

must be balanced or outweighed by the negative terms. That is, any weight with pi≤8−D 6= 0

must at least be accompanied by non-zero values of p9−D or p11−D. Consequently the

putative string charge representations with (p1 = 2) and (p2 = 1) do not appear in the l1

representation. Thus the (p10−D = 1) representation having highest weight λ10−D is the

unique representation carrying the string charge in the l1 representation when h = 0. If

we now consider solutions when h 6= 0 satisfying mD = 2 = (p + 1) in equation (2.38) we

may find the remaining string charge multiplets in D = 3. We find,

(h = 1, p1 = 1), (h = 2) (2.47)

Where all the remaining pi are zero. From equation (2.43) we find that β2 = 0 for the first

case and β2 = −2 for the second case. So both of these are highest weights of string charge

multiplets in D = 3, they are the 248 and the 1 respectively. The string of roots in the

representation may be found by searching amongst roots of the form (13, 2,mD+1, . . . ,m11)

in the l1 representation such that β2 ≤ 0 in the first case, and β2 ≤ −2 in the second case.

The precise roots forming these multiplets are shown in tables 20 and 21. From table 20

we can identify dual generators in the 248 representation and associate an invariant mass

squared to the multiplet:

M2
248 ∼ R2

aV
4

l36p

(2.48)

The invariant mass squared is:

M2
1 ∼ R2

aV
4

l36p

(2.49)

We note that the invariant mass squared is the same over all three (the 3875,248,1) string

charge multiplets in three dimensions - the Casimir of the representations of the internal

group is a property of the spacetime algebra.
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E12 root Charge Dimension of SL(8) tensor Mass

(13, 22, 3, 4, 5, 6, 4, 2, 3) Zaj1...j7 8 R3V
R4l9p

(13, 2, 3, 4, 5, 6, 7, 4, 2, 4) Zaj1...j8,k1k2 28 R3V R10R11
l12p

(13, 2, 3, 4, 5, 7, 9, 6, 3, 5) Zaj1...j8,k1...k5 56 R3V R7...R11
l15p

(13, 2, 4, 6, 8, 10, 12, 8, 4, 6) Zaj1...j8,k1...k8 1 R3V 2

l18p

(13, 2, 3, 5, 7, 9, 11, 7, 3, 6) Zaj1...j8,k1...k7,l1 63 R3V 2R11
R4l18p

(13, 2, 4, 6, 8, 10, 12, 8, 4, 7) Zaj1...j8,k1...k8,l1l2l3 56 R3V 2R9...R11

l21p

(13, 2, 4, 6, 9, 12, 15, 10, 5, 8) Zaj1...j8,k1...k8,l1...l6 28 R3V 2R6...R11
l24p

(13, 2, 5, 8, 11, 14, 17, 11, 5, 9) Zaj1...j8,k1...k8,l1...l8,m1 8 R3V 3R11
l27p

Table 20: A second string charge multiplet in D = 3/The 248 of E8.

E12 root Charge Dimension of SL(8) tensor Mass

(13, 2, 4, 6, 8, 10, 12, 8, 4, 6) Zaj1...j8,k1...k8 1 R3V 2

l18p

Table 21: A third string charge multiplet in D = 3/The 1 of E8.

We can carry out the same analysis for the possible membrane charge multiplets. With

p = 2, we look for pi giving mD = 3 with h = 0 in equation (2.38). The possible highest

weights have non-zero Dynkin labels:

(p1 = 3), (p1 = 1, p2 = 1), (p3 = 1), (p1 = 1, p10−D = 1), (p11−D = 1) (2.50)

For p = 2 we must find a negative contribution to the squared root length in equation (2.46)

coming from the E11−D Dynkin labels, pi. This means that at least either p9−D or p11−D

must be non-zero. Consequently the highest weight representation carrying the membrane

charge is unique in the l1 representation, the 147250, having (p11−D = 1). When h > 0

we find the following highest weights carrying spacetime membrane charges with β2 =

2, 0,−2, . . .:

(h = 1, p2 = 1), (h = 1, p10−D = 1), (h = 2, p1 = 1), (h = 3) (2.51)

Their highest weights have root lengths such that β2 ≤ 0,−2,−4,−6 and they correspond

to the 30380, 3875,248 and 1 respectively, as indicated in table 2.

This process can be carried out to discover all the charge multiplets from the particle

multiplet to the D− 1-brane multiplet in D dimensions. The results of doing so are shown

in table 2 for three, four, five, six, seven and eight spacetime dimensions.

The reader will notice that in addition to the well-known charge multiplets there are

additional representations of E11−D appearing in table 2. For example the particle charge

multiplet in three dimensions is the 248 supplemented by a singlet 1, and the string

multiplet is no longer just the 3875 but also the 248 and the 1 of E8 and so on. The

existence of some of these extra multiplets were in fact argued for in [9] see for example
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section 7.2 or appendix C therein. The authors of [9] considered bound states formed

from the particle and string charge multiplets, given in the M-theory language, and then

looked to see if all the bound states of D-branes in the IIA or IIB language appeared.

By identifying the omissions and arguing in favour of completing the spectrum of bound

states extra charge multiplets were conjectured. The examples of [9] were in D=5 where

a singlet corresponding to a bound state of a D6 and a D0 brane in the IIA picture

was predicted and in D=4 where an additional 56 and two singlets of E7 were argued

for to account for missing bound states of the D7 brane, now in the IIB picture. It is

straightforward to confirm that the mass of the exotic states in these examples agrees with

the masses associated to the matching additional representations shown in table 2. The

natural appearance of additional charge multiplets from E11, completing the spectrum of

bound states in D=5 and D=4, is an interesting result tied up with the prediction that

there exist further exotic states beyond those previously uncovered in the BPS spectrum

but revealed fully here.3

3. Mass and tension in toroidally compactified backgrounds

The identity between the U-duality symmetries of M-theory and the action of the Weyl

group of En was achieved in [8, 9] by making use of a formula that gave the tension encoded

in a weight vector.4

The tension formula was justified empirically but its origin appeared mysterious. The

tension formula gave the known tension of p-branes, strings and particles corresponding

to a weight vector in a D + 1 dimensional vector space modulo the addition of the unique

vector orthogonal to a D dimensional (sub-)vector space associated with spacetime. The

unique orthogonal vector was shown to correspond to Newton’s gravitational constant. In

this section we give the main result of this paper: an algebraic formula for deriving tensions

from the l1 charge algebra and show that it is consistent with the lower dimensional formula

used in [6 – 10]. We apply the solution to find known brane and string tensions in M-theory,

and the IIA and IIB theories, and retrospectively to reproduce the tensions of the brane

charge multiplets derived in section 2. Furthermore we are able to interpret the most part

of the charge algebra as being associated to KK-brane charges and offer a classification

scheme for these exotic charges within the l1 representation.

3.1 The truncated group element as a vielbein

The group element of l1 ⊗s E11 at low levels is,

g = exp(xµPµ) exp(ha
bKa

b) exp

(

1

3!
Ac1c2c3R

c1c2c3

)

exp

(

1

6!
Ad1...d6R

d1...d6

)

. . . (3.1)

Where the ellipsis indicates the exponentiation of further generators of both the l1 repre-

sentation of E11 as well as its adjoint representation. The restriction of the group element

3We thank the reviewer for drawing our attention to the comments in this paragraph.
4See, for example, equation (3.13) on page 30 of [9]
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to the Cartan subalgebra, leaving only the components Ka
a of the Ka

b generators non-zero,

corresponds in the nonlinear realisation to considering a diagonalised vielbein and metric,

gµµ = (e2h)µ
a
ηaa (3.2)

We recall the success in reconstructing the G+++ half-BPS solutions of the eleven dimen-

sional, IIA and IIB supergravity theories [4] as well as the maximally oxidised supergravity

theories [13] from the coefficients of the Cartan subalgebra in a truncated version of the

group element given by,

gβ = exp

(

− 1

β2
lnNH · β

)

exp ((1 − N)Eβ) (3.3)

This group element encoded half-BPS solutions as a group element of E11. In this group

element the part of a general root, β, occurring in the Cartan sub-algebra was singled out

using the inner product of the root with the Cartan sub-algebra, H · β. However in the

present paper we work with the l1 representation of E11, or charge algebra, which is defined

in the twelve-dimensional lattice of E12. In this context it is natural to extend the form of

the half-BPS group element of E11 to E12, where we allow the inner product H · β to run

over the twelve generators of the Cartan sub-algebra of E12.

It will be fruitful to employ a change of notation at this stage in order to highlight the

physical role played by the variables in the group element. There are two natural bases

to work in, one uses the diagonalised generators, Ka
a, and the other uses the generators

of the Cartan sub-algebra, Ha. We now make a change of notation and substitute pa for

the field ha associated to the generators, Ka
a. When we work in the basis of the Cartan

subalgebra, Ha, we will label the fields pre-multiplying the Ha by qa.

Let us consider a spacetime with a dimension compactified on a circle, the line element

for such a direction becomes,

(e2pi)µ
i
dξ2

i = dx2
µ (3.4)

Where ξi is a circular coordinate taking values in the range [0, 2π]. So that if the radius of

compactifcation is Ri in the worldvolume, we find by integrating,

pi = ln
Ri

lp
(3.5)

Where lp is the Planck length, and appears so that the parameters pi are dimensionless.

For the non-compact directions we set all the pi to the same constant [14].

In the setting of the l1 representation we must also find an interpretation for p∗ as-

sociated to the additional coordinate. It was shown in [14] that the scaling of the Planck

constant under T-duality was predicted by an E11 symmetry. In that paper the non-

compact pi were set equal to the same constant C and the effect of the Weyl reflection

in the root α11 was denoted by a primed index. It was shown that the non-compact pa-

rameters encoded the scaling of Minkowski metric of spacetime with respect to the eleven

dimensional metric via,

C ′ − C = ln
lp

l′p
(3.6)
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Figure 5: The Dynkin diargam of K28 ≡ D++++
24 .

One way to satisfy this scaling is by setting C = ln( 1
lp

) = pi. We propose to treat the extra

coordinate in the l1 representation as such a non-compact parameter and we set:

p∗ = ln

(

1

lp

)

(3.7)

And, indeed,

pi = ln

(

1

lp

)

(3.8)

for all non-compact coordinates. This choice for the non-compact pi introduces dimen-

sionful parameters into the group theory with the dimension of mass in Planck units. A

consequence of p∗ being a massive parameter means that the fully-compactified theory will

also have a dimensionful parameter.

While this interpretation of the vierbein associated to the additional coordinate is

motivated as a particularly simple solution of equation (3.6), it appears appears to be

on the correct footing, having a comparable form to that of the compact parameters pi

coordinates, and also being dependent only upon the Planck length. Ultimately we will

rest upon the successful reproduction of the brane tensions as shown in the latter sections

of this paper and on the correct tensions in the brane charge multiplets of section 2 to

justify the choice of p∗.

Upon reduction to the ten dimensional IIA theory we may interpret the radius of the

compact direction in terms of the string length,

p11 = ln

(

R11

lp

)

= ln

(

g
2
3
s

)

= ln

(

lp

ls

)2

(3.9)

Where we have used R11 = gsls and l3p = gsl
3
s which are well-known identifications but

which may be independently derived solely from considering the E11 algebra [15].

One can make similar speculations for the l1 extension of the K27 algebra related to

the twenty-six-dimensional bosonic string, for which the Dynkin diagram is shown below,

In this case we have twenty-six pi’s related to the spacetime coordinates, which we

can interpret in a similar way as for E11, i.e. pi = ln Ri

lp
, and two more, p27 and p∗. We

would like to make a similar association with energy to the ∗ node, i.e. p∗ = 1
lp

, and we also

have the dimensionful constant of string length which we associate with p27, specifically

one might take p27 = ( ls
lp

)2, and see if it leads to sensible and consistent results, but this is

beyond the scope of the present work.
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3.2 A tension formula

As we have mentioned the l1 representation is conjectured to be the charge algebra of M-

theory. For each brane solution in the E11 adjoint algebra there is a corresponding brane

charge in the l1 representation. The l1 representation is described equivalently by roots in

the E12 lattice or weights in the E11 lattice. For each extremal half-BPS brane the brane

charge is equal to the mass. We conjecture the following mass formula for an E12 root, β,

Zβ =
< β| exp (qaαa·H)|β >

< β|β >
= exp (qaαa·β) (3.10)

Where Ha ≡ αa · H are generators of the E12 Cartan subalgebra. It is the expectation

value of the half-BPS brane solution group element of equation (3.3) generalised to the

E12 lattice. Where the Cartan sub-algebra now has twelve generators. We note that the

generators which act as raising and lowering operators on |β > are projected out as we

take the same bra as ket and all that remains of the group element is the Cartan sub-

algebra component.

We note here the effect of Weyl reflecting a root β prior to applying the expression in

equation (3.10). Recall that the Weyl reflections for a simply laced algebra act on the root

lattice as:

Sa(αb) = αa − 2
< αa, αb >

< αa, αa >
αb = αa − Aabαb (3.11)

Where Aab is the Cartan matrix. Under this reflection ZSa(β) is:

ZSa(β) =
< Sa(β)| exp (qbαb·H)|Sa(β) >

< β|β >
(3.12)

= exp (qbαb·(Saβ))

= Zβ exp (−qbAab(αa · β))

= Sa(Zβ)

A Weyl reflection of a root in the E12 lattice transforms the radii of the compact physical

brane solution and gives a correction to the mass formula for the original brane solution

as shown. We will make use of this expression in the IIB scenario to find the change in the

mass formula for known solutions which undergo an S-duality transformation.

We may write β in terms of the fundamental weights, li, of E12,

β =
11

∑

i=∗,1

< β,αi > li ≡
∑

n̂ili (3.13)

Now, we have,

Zβ = exp (qaαa · β) (3.14)

= exp (qan̂a) (3.15)

The coordinates are now in the Chevalley basis, Ha, whose algebraic interpretation we

understand but we would prefer to use a different basis, Ka
a, whose physical interpretation
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is clear [14]. We change basis to obtain an expression in terms of pa, the coefficients of

Ka
a, so we may interpret this as a mass formula using equations (3.5) and (3.6). Defining

the transformation ρ : Ka
a → Ha and using,

Ha = Ka
a − Ka+1

a+1 a = ∗, 1, 2, . . . 10

H11 = −1

3
(K∗

∗ + K1
1 + · · · + K8

8) +
2

3
(K9

9 + K10
10 + K11

11) (3.16)

Then,

−3(ρ−1)T =















































−2 1 1 1 1 1 1 1 1 1 1 1

−1 −1 2 2 2 2 2 2 2 2 2 2

0 0 0 3 3 3 3 3 3 3 3 3

1 1 1 1 4 4 4 4 4 4 4 4

2 2 2 2 2 5 5 5 5 5 5 5

3 3 3 3 3 3 6 6 6 6 6 6

4 4 4 4 4 4 4 7 7 7 7 7

5 5 5 5 5 5 5 5 8 8 8 8

6 6 6 6 6 6 6 6 6 9 9 9

4 4 4 4 4 4 4 4 4 4 7 7

2 2 2 2 2 2 2 2 2 2 2 5

3 3 3 3 3 3 3 3 3 3 3 3















































(3.17)

Now,

qaαa · H = pa · ρ−1 · ρ · Ka
a = pa · ρ−1 · H (3.18)

Where we have suppressed the indices on the matrix ρ. For example we may read off,

q∗ = −1

3
(−2p∗ + p1 + p2 + · · · p11) (3.19)

We now have,

Zβ = exp(pa · ρ−1 · n̂a) (3.20)

= exp(n̂a · (ρ−1)T · pa)

For convenience we make a further basis transformation and express the fundamental

weights of E12, li, in terms of the 12-dimensional vector space basis, ei, that we made

use of in section 1,

β =
∑

miei =
∑

n̂jlj (3.21)

We observe that the basis transformation R : li → ei is R = (ρ)T and n̂iρ−1T
= mi, giving

a more convenient form for Zβ when substituted in (3.20),

Zβ = exp(m · p) (3.22)

And making use of equations (3.5) and (3.7), we find a formula that we may interpret as

a mass for toroidally compactified dimensions,

Zβ =

(

1

lp

)m∗
i=11
∏

i=1

(

Ri

lp

)mi

(3.23)
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Where β =
∑11

i=∗,1 miei. For the l1 representation m∗ = 1. This formula gives the results

found in [6 – 10] directly from the algebra without the need to work modulo the addi-

tion of an orthogonal vector corresponding to constants of the theory. In particular see

equation (4.28f) on page 54 of the review [9] where the mass of the Kaluza-Klein mode

is found modulo the addition of a vector orthogonal to the fundamental weights of the

E11−D algebra.

We observe, in passing, that in the review [9] there is an orthogonal vector which in

the presentation here is played by the y vector used in section 1 - i.e. it represents the

part of the l1 representation that is orthogonal to the roots of the En algebra. In [9] this

orthogonal vector encoded Newton’s constant. In the present case y too is a function of

Newton’s constant. The vector y = e∗ − 1
2(e1 + · · · e11) has a mass, Zy where,

Zy =
1

lp

(

l11p

R1 . . . R11

)
1
2

=
√

G11 = κ11 (3.24)

Where κ11 is the gravitational constant in eleven dimensions. Thus the orthogonal vector

y encodes the gravitational coupling constant, κ11.

3.3 Brane tensions from weights of the l1 representation

Now we apply the mass equation (3.23) to low level weights in the l1 representation which

correspond in the various decompositions detailed in section 1 to charges of M-theory,

the IIA string theory and the IIB string theory. The process is simplified immensely by

deriving the tension in a background where the brane solution is wrapping a torus. That

is the charge, which is identified with the mass for the extremal solutions, is contained

entirely on the surface of a torus.

3.3.1 Compactifications of M-theory

As described we compactify each p-brane solution on a p-torus in the eleven dimensional

background. In this case the tension is derived from the mass by dividing by the p-torus

volume. Let us look at specific examples occurring at low levels in the l1. The relevant

decomposition is given explicitly in section 1, and the algebra is split into representations

of A10 graded by the level m11 given in equation (1.15). At level m11 we must solve

−A + 1 + 11k = 3m11 (3.25)

With the exception of the translation generator (for which k=0) we will restrict ourselves

to the solutions where k =
∑

pi, which corresponds to generators with no blocks of eleven

antisymmetrised indices (i.e. trivial volume forms ǫ), in which case we may rearrange this

formula to get an expression in terms of the number of indices # ≡ ∑

(11 − i)pi,

# = 3m11 − 1 (3.26)

At level m11 = 0 the corresponding charge has −1 indices, which we may interpret as one

contravariant index. The solution has k = 0, p1 = 1 and all other pi = 0 and corresponds
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to the charge Pa. The corresponding root from equation (1.22) and its mass according to

equation (3.23) are

βpp = e∗ − e1 Zβpp
=

1

R1
(3.27)

Where we have singled out R1 as the radius of a compact direction in which the pp-wave

circulates. This is the mass of a KK-mode, or compactified pp-wave solution, in which

momentum circulates around the compact direction. The radius R1 has been singled out

in this example, but there is a democracy of spacetime coordinates that can be seen under

the Weyl reflections of the gravity line. The simple root we have used here is α∗ but under

the Weyl reflections of A10 may be rotated into α∗ + α1 + · · · + αi where i ≤ 10, which

have mass 1
Ri

. In what follows the results will be given modulo the A10 Weyl reflections

and particular radii will be given in the mass formulae but as in this example there are no

inherently special spacetime directions particular to the solution.

At level m11 = 1 we find a two index charge, associated to the M2 brane charge.

Specifically we solve equation (1.15),

−A + 11k = 2 (3.28)

This has a solution with p9 = 1 and all other pi = 0 (implying k =
∑

pi = 1), such that

by equation (1.24) β2 = 2. The corresponding root, from equation (1.22), and its mass

according to equation (3.23), are,

βM2 = e∗ + e10 + e11 ZβM2
=

R10R11

l3p
(3.29)

We calculate the tension by dividing through by the torus volume that the brane is wrap-

ping, for the M2 brane wrapped on a 2-torus in the x10, x11 directions we divide by

V2 = (2π)2R10R11 giving,

TM2 ≡ ZβM2

V2
=

1

(2π)2l3p
(3.30)

This is the tension [26] of the M2 brane.

At level m11 = 2 we find the charge corresponding to the M5 brane, having p6 = 1

and all other pi = 0 such that β2 = 2, giving a root with mass,

βM5 = e∗ + e7 + · · · + e11 ZβM5
=

R7R8 . . . R11

l6p
(3.31)

Dividing through by the surface area of a 5-torus, V5 = (2π)5R7R8 . . . R11, we find the

tension [19] of the M5 brane,

TM5 ≡ ZβM5

V5
=

1

(2π)5l6p
(3.32)

At level m11 = 3 we find the charge corresponding to the dual graviton or KK6

monopole, having p4 = p7 = 1 and all other pi = 0 such that β2 = 2, giving a root

with mass,

βKK6 = e∗ + e5 + · · · + e10 + 2e11 ZβKK6
=

R5R6 . . . R10R
2
11

l9p
(3.33)

– 41 –



J
H
E
P
1
1
(
2
0
0
8
)
0
9
1

Dividing through by the surface area of a 7-torus, V5 = (2π)7R5R8 . . . R11, we find

the tension,

TKK6 ≡ ZβKK6

V7
=

R11

(2π)7l9p
(3.34)

The tension here is sensible only in the compact setting. Upon decompactifying (R11 → ∞)

the tension diverges. This is an example of the tension of a Kaluza-Klein brane, the higher-

dimensional analogue of the Kaluza-Klein monopole. Let us define a KK-brane to be objects

related to p-branes by U-duality transformations whose tension is dependent upon the radii

of compactification of the background. The KK6 has a Taub-NUT fibration in the R11

direction, in our notation. We will find that most tensions arising from the charge algebra

will diverge when carried over to the non-compact setting and associated to KK-branes

carrying a generalisation of the four-dimensional Taub-NUT charge (for a discussion of the

higher-dimensional Taub-NUT charge see [22]).

Let us now turn away from specific cases and look at the mass given by the general

E12 root in the l1 representation of E11. By this we mean putting the coefficients of the

solution given in equation (1.22) into equation (3.23). We find,

Zβ =
1

lp

10
∏

n=1

(

Rn

lp

)(k−
P10

i=n pi)(R11

lp

)k

(3.35)

=
R

k−(p1+···+p10)
1 R

k−(p2+···+p10)
2 . . . R

k−p10
10 Rk

11

l3m11
p

(3.36)

To find the tension we now divide through by the volume of the relevant compact torus.

And now we hit a snag. In our previous tension calculations we knew the charge and hence

the brane solution we were considering ab initio. It was therefore clear that for a p-brane

solution we could wrap the charge on a p-torus and then divide through by the volume of

the p-torus to find the tension. In our approach to a generalised tension formula we do

not know the particular solution and neither do we know relevant p-torus volume to divide

the mass formula by. In the general case we expect a monomial in the radii to remain

even after we have divided the mass formula by the appropriate p-torus volume. We have

already seen an example of this in the case of the KK6 or dual graviton tension, where a

single power of R11 remained in the expression for the tension.

We shall therefore insert a parameter, Ω, that will keep track of all the remaining radii

after the appropriate p-torus volume has been divided out. This parameter is introduced

to keep our expressions compact and in any particular solution it will be straightforward

to give Ω explicitly. Our next step is to divide the mass formula by the part of its

numerator which corresponds to the unknown p-torus volume with each radius dressed up

with 2π. That is we divide by a volume Vp ∼ (2πR)p, with one 2πRi for each radius that

occurs, where,

VpΩ ≡ (2πR1)
k−(p1+···+p10)(2πR2)

k−(p2+···+p10) . . . (2πR10)
k−p10(2πR11)

k (3.37)

= (2π)3m11−1R
k−(p1+···+p10)
1 R

k−(p2+···+p10)
2 . . . R

k−p10
10 Rk

11
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Returning to our general formula and dividing by the volume Vp of the relevant p-torus

we find the tension for all solutions of the l1 representation is:

Tβ =
Ω

(2π)3m11−1l3m11
p

=
Ω

(2π)#l
#+1
p

(3.38)

Where we have used # ≡ −A + 11k, which for the special class of roots with k =
∑

i pi

is the number of indices on the charge.

We observe now that Ω does record a property of the solution, for whenever Ω is not

a constant the solution has a divergent tension in the non-compact setting. In this case

the tension has a form associated to KKp-branes - objects included by duality arguments

into brane charge multiplets in the eleven dimensional theory but really associated to

KK-waves and winding modes in lower dimensions. For example in the case of the KK6

brane tension considered earlier Ω = 2πR11. Indeed in [6, 8, 17, 21] non-perturbative sets

of higher-dimensional Kaluza-Klein branes have been found and their masses given for M-

theory, IIA and IIB theories. The KK-branes of string theory found in [21] constitute a class

of solutions derived from the D7 brane and have masses proportional to 1
g3

s
. Indeed objects

whose mass, Z, is proportional to 1
gn

s
where n ≥ 3 have a non-vanishing gravitational field

strength,F ∝ GZ ∝ g2
sZ in the weak coupling limit (gs → 0). States with these masses do

not therefore admit an asymptotically flat spacetime [6]. The weak coupling limit is not

sensible for these states, and their presence in M-theory remains an unsolved puzzle. We

will identify in the l1 representation the states of this sort including those discussed in [21]

and for the M-theory, IIA and IIB theories we will find highly non-perturbative masses

proportional to arbitrary positive powers of 1
lp

for M-theory and 1
gs

for the string theories.

In the l1 representation of E11 we find the following roots in the E12 root lattice with

associated mass as shown,

βWM7 = e∗ + 2(e4 + · · · + e10) + 3e11 ZWM7 =
(R4 . . . R10)

2R3
11

l18p

(3.39)

βM26 = e∗ + (e4 + e5) + 2(e6 + · · · e11) ZM26 =
R4R5(R6 . . . R11)

2

l15p

βM53 = e∗ + (e4 + · · · + e8) + 2(e9 + · · · e11) ZM53 =
R4 . . . R8(R9 . . . R11)

2

l12p

These roots have masses which agree with deformations of the fundamental states of M-

theory that were found in [21]. These states were argued to exist in the eleven dimensional

theory in order to explain the origin of ten-dimensional string theory KK-branes whose

existence is inferred from U-duality transformations. Following the notation of [21] the

additional M-theory solutions are labelled WM7, M26 and M53. It was recognised [21]

that these charges appear in the superalgebra but the attempt to include them in the

expansion of the anticommutator, {Q, Q̄}, were artificial whereas the supercharges arise

naturally in the l1 representation of E11.

We emphasise that these are a small set of all the KK-branes of M-theory the full

set of which is contained in the l1 representation of E11. Indeed it seems the role of
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Level Mpi Mass E12 Root Root length

(m11) (ei basis) squared

3 M61
R5R6R7R8R9R10R2

11
l9p

(1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2) 2

4 M53
R4R5R6R7R8R2

9R2
10R2

11
l12p

(1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2) 2

4 M72
R3R4R5R6R7R8R9R2

10R2
11

l12p
(1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2) 0

4 M91
R2R3R4R5R6R7R8R9R10R2

11
l12p

(1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2) −2

5 M83
R1R2R3R4R5R6R7R8R2

9R2
10R2

11
l15p

(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2) −4

5 M26
R4R5R2

6R2
7R2

8R2
9R2

10R2
11

l15p
(1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2) 2

5 M45
R3R4R5R6R2

7R2
8R2

9R2
10R2

11
l15p

(1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2) 0

5 M63
R2R3R4R5R6R7R2

8R2
9R2

10R2
11

l15p
(1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2) −2

6 M56
R1R2R3R4R5R2

6R2
7R2

8R2
9R2

10R2
11

l18p
(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2) −6

6 M18
R3R2

4R2
5R2

6R2
7R2

8R2
9R2

10R2
11

l18p
(1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2) −2

6 M37
R2R3R4R2

5R2
6R2

7R2
8R2

9R2
10R2

11
l18p

(1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2) −4

7 M29
R1R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10R2

11
l21p

(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2) −10

7 M010
R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R2

10R2
11

l21p
(1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) −8

Table 22: The full set of M-theory Mpi branes from the l1 representation of E11.

the variable k used in section 1.1 in the decomposition of the l1 representation classi-

fies the different types of KK-branes that appear. From equation (1.22), or from the

expression for the mass, Zβ, one can see that the dependence on the eleventh radius

R11 is controlled by k. The KK-branes have masses with powers of the radii greater

than one, and since k is also the greatest radial power appearing in the mass for-

mula one could use k to classify finite sets of KK-branes. For example in M-theory

one could look for all the KK-branes with masses quadratic in the radii by listing the

roots with k = 2. From table 25, one finds the following, given explicitly in table 22:

M61,M53,M72,M91,M83,M26,M45,M64,M56,M18,M37,M29 where the script num-

ber refers to the number of linear radii and the subscript to the number of radii which are

squared in the mass formula.

3.3.2 IIA supergravity

To study the ten-dimensional IIA theory the l1 algebra is decomposed into representations

of the A9 subalgebra formed from the roots numbered 1 to 9, in the E12 Dynkin diagrams

shown in the introduction. The decomposition was carried out in section 1 and a general

root given in equation (1.39). We now find the formula for the mass this general root as
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given by equation (3.23),

Zβ =
1

lp

9
∏

n=1

(

Rn

lp

)(k−
P9

i=n pi)(R10

lp

)k(
R11

lp

)(m11−m10)

(3.40)

=
R

k−(p1+···+p9)
1 R

k−(p2+···+p9)
2 . . . R

k−p9
9 Rk

10R
m11−m10
11

l3m11
p

(3.41)

To find a convenient notation we divide through by the appropriate volume Vp as before

to remove the radial dependencies, i.e. we divide by

Vp ≡ (2π)10k−A

Ω
R

k−(p1+···+p9)
1 R

k−(p2+···+p9)
2 . . . R

k−p9
9 Rk

10 (3.42)

giving,

Tβ =
ΩRm11−m10

11

(2π)10k−Al3m11
p

(3.43)

=
Ω

(2π)#gm10
s l

#+1
s

(3.44)

Where we have made use of the identities R11 = gsls and l3p = gsl
3
s . As before we have

defined # ≡ 10k − A and in the case where k =
∑

i pi, # is the number of indices on the

corresponding generator in the algebra. We now may pose the question: which roots in

the algebra have tensions with a single string coupling constant in them. Immediately we

see we are looking for the roots such that m10 = 1. Now # = 2m11 + m10 − 1 = 2m11.

Therefore we note that the charges we will find matching this criteria will have an even

number of indices if they exist in the algebra. Specifically m10 = 1 gives q = −k + 1 and

so 2m11 = −A + 10k. The cases where k =
∑

i pi and where only a single pi is nonzero

and equal to one we have k = 1 and we must solve 2m11 = 10−A ≥ 0 which has solutions

for A = 0, 2, 4, 6, 8 corresponding to the D10, D8, D6, D4, D2 brane solutions. For each

Dp-brane we have p(10−p) = 1 with all other pi = 0. Therefore for these cases, we have

# = p where p is even and less than ten, we find,

TβDp
=

1

(2π)pgsl
p+1
s

(3.45)

Which is the tension formula for the RR D-brane charges of the IIA theory. The D0-brane

charge occurs when all pi = 0 so that # = 0, consequently,

βD0 = e∗ − e11 TβD0
=

1

gsls
≡ 1

gs

√
α′

(3.46)

Note that the result is precisely given by by the tension formula from βD0 and not modulo

an additional orthogonal vector as was the case for the KK mode of [9]. The fundamental

string charge is listed at level (1, 1) in table 27 in the appendix - it’s highest weight generator

is associated to the root βF1 = e∗ − e11 and its tension is:

TβF1
=

1

2πl2s
(3.47)
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One can also identify the tension of the NS5 brane, whose charge is associated to the root

βNS5 = e∗ + e6 + e7 + e8 + e9 + e11 appearing at level (3, 1) in table A3. The corresponding

tension is:

TβNS5
=

1

(2π)5g2
s l

6
s

(3.48)

Amongst the weights in the l1 representation of E11 one can use the tension formula

to identify the roots corresponding to the KK-branes of the IIA theory given in [21],

namely the D07,D25,D43 and D61 which are all derived from the D7 brane by U-duality

transformations. Using table 26 in the appendix we may identify:

βD07 = e∗ + 2(e4 + · · · + e10) + 3e11 ZD07 =
(R4 . . . R10)

2

g3
s l

15
s

(3.49)

βD25 = e∗ + (e4 + e5) + 2(e6 + · · · e11) ZD25 =
R4R5(R6 . . . R10)

2

g3
s l

13
s

βD43 = e∗ + (e4 + · · · + e7) + 2(e8 + · · · e10) + e11 ZD43 =
R4 . . . R7(R8 . . . R10)

2

g3
s l

11
s

βD61 = e∗ + (e4 + · · · + e9) + 2e10 ZD61 =
R4 . . . R9(R10)

2

g3
s l9s

One can use the parameter k to classify the KK-brane solutions; in the IIA decomposition k

is the coefficient of e10. The full set of Dpi branes, where i indicates the number of directions

with a Taub-NUT fibration, corresponds to all the weights in the l1 representation having

k = 2, shown in table 23.

Level Dpi Mass E12 Root Root length

(m10,m11) (ei basis) squared

(2, 3) D51
R5R6R7R8R9R2

10
g2

s l8s
(1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1) 2

(3, 3) D61
R4R5R6R7R8R9R2

10
g3

s l9s
(1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0) 2

(2, 4) D52
R4R5R6R7R8R2

9R2
10

g2
s l10s

(1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2) 2

(2, 4) D71
R3R4R5R6R7R8R9R2

10
g2

s l10s
(1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2) 0

(3, 4) D43
R4R5R6R7R2

8R2
9R2

10
g3

s l11s
(1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1) 2

(3, 4) D62
R3R4R5R6R7R8R2

9R2
10

g3
s l11s

(1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1) 0

(3, 4) D81
R2R3R4R5R6R7R8R9R2

10
g3

s l11s
(1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1) −2

(4, 4) D91
R1R2R3R4R5R6R7R8R9R2

10
g4

s l12s
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0) −2

(4, 4) D53
R3R4R5R6R7R2

8R2
9R2

10
g4

s l12s
(1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 0) 2

(4, 4) D72
R2R3R4R5R6R7R8R2

9R2
10

g4
s l12s

(1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0) 0

(5, 4) D82
R1R2R3R4R5R6R7R8R2

9R2
10

g5
s l13s

(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,−1) 2

(2, 5) D91
R1R2R3R4R5R6R7R8R9R2

10
g2

s l12s
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3) −2

(2, 5) D53
R3R4R5R6R7R2

8R2
9R2

10
g2

s l12s
(1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3) 2

Table 23 — Continued on next page
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Table 23 — Continued from previous page

Level Dpi Mass E12 Root Root length

(m10,m11) (ei basis) squared

(2, 5) D72
R2R3R4R5R6R7R8R2

9R2
10

g2
s l12s

(1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3) 0

(3, 5) D82
R1R2R3R4R5R6R7R8R2

9R2
10

g3
s l13s

(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2) −4

(3, 5) D25
R4R5R2

6R2
7R2

8R2
9R2

10
g3

s l13s
(1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2) 2

(3, 5) D44
R3R4R5R6R2

7R2
8R2

9R2
10

g3
s l13s

(1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2) 0

(3, 5) D63
R2R3R4R5R6R7R2

8R2
9R2

10
g3

s l13s
(1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2) −2

(4, 5) D73
R1R2R3R4R5R6R7R2

8R2
9R2

10
g4

s l14s
(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1) −4

(4, 5) D16
R4R2

5R2
6R2

7R2
8R2

9R2
10

g4
s l14s

(1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 1) 2

(4, 5) D35
R3R4R5R2

6R2
7R2

8R2
9R2

10
g4

s l14s
(1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1) 0

(4, 5) D54
R2R3R4R5R6R2

7R2
8R2

9R2
10

g4
s l14s

(1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1) −2

(5, 5) D64
R1R2R3R4R5R6R2

7R2
8R2

9R2
10

g5
s l15s

(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0) −2

(5, 5) D26
R3R4R2

5R2
6R2

7R2
8R2

9R2
10

g5
s l15s

(1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 0) 2

(5, 5) D45
R2R3R4R5R2

6R2
7R2

8R2
9R2

10
g5

s l15s
(1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0) 0

(6, 5) D55
R1R2R3R4R5R2

6R2
7R2

8R2
9R2

10
g6

s l16s
(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,−1) 2

(2, 6) D73
R1R2R3R4R5R6R7R2

8R2
9R2

10
g2

s l14s
(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4) 0

(2, 6) D54
R2R3R4R5R6R2

7R2
8R2

9R2
10

g2
s l14s

(1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4) 2

(3, 6) D64
R1R2R3R4R5R6R2

7R2
8R2

9R2
10

g3
s l15s

(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3) −4

(3, 6) D07
R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g3

s l15s
(1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 3) 2

(3, 6) D26
R3R4R2

5R2
6R2

7R2
8R2

9R2
10

g3
s l15s

(1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3) 0

(3, 6) D45
R2R3R4R5R2

6R2
7R2

8R2
9R2

10
g3

s l15s
(1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3) −2

(4, 6) D46
R1R2R3R4R5R2

6R2
7R2

8R2
9R2

10
g4

s l16s
(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2) −6

(4, 6) D17
R3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g4

s l16s
(1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2) −2

(4, 6) D36
R2R3R4R2

5R2
6R2

7R2
8R2

9R2
10

g4
s l16s

(1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2) −4

(5, 6) D46
R1R2R3R4R2

5R2
6R2

7R2
8R2

9R2
10

g5
s l17s

(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1) −6

(5, 6) D08
R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g5
s l17s

(1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 1) −2

(5, 6) D27
R2R3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g5

s l17s
(1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1) −4

(6, 6) D37
R1R2R3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g6

s l18s
(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0) −4

(6, 6) D18
R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g6
s l18s

(1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0) −2

(7, 6) D28
R1R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g7
s l19s

(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,−1) 0

(7, 6) D09
R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g7

s l19s
(1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2,−1) 2

Table 23 — Continued on next page
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Table 23 — Continued from previous page

Level Dpi Mass E12 Root Root length

(m10,m11) (ei basis) squared

(2, 7) D55
R1R2R3R4R5R2

6R2
7R2

8R2
9R2

10
g2

s l16s
(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 5) 2

(3, 7) D46
R1R2R3R4R2

5R2
6R2

7R2
8R2

9R2
10

g3
s l17s

(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4) −4

(3, 7) D08
R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g3
s l17s

(1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 4) 0

(3, 7) D27
R2R3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g3

s l17s
(1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4) −2

(4, 7) D37
R1R2R3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g4

s l18s
(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3) −8

(4, 7) D18
R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g4
s l18s

(1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3) −6

(5, 7) D28
R1R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g5
s l19s

(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2) −10

(5, 7) D09
R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g5

s l19s
(1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) −8

(6, 7) D19
R1R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g6

s l20s
(1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1) −10

(7, 7) D010
R2

1R2
2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g7
s l21s

(1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0) −8

(3, 8) D28
R1R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g3
s l19s

(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 5) −4

(3, 8) D09
R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g3

s l19s
(1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5) −2

(4, 8) D19
R1R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R2

10
g4

s l20s
(1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4) −10

(5, 8) D010
R2

1R2
2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g5
s l21s

(1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3) −14

(3, 9) D010
R2

1R2
2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R2
10

g3
s l21s

(1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6) −4

Table 23: The full set of IIA Dpi branes from the l1 representation of E11.

3.3.3 IIB supergravity

We repeat the process applied to the IIA case but making use of the IIB variables. The

decomposition was carried out in section 1 and a general root given in equation (1.57)

which we use with equation (3.6) to find the mass,

Zβ =
1

lp

9
∏

n=1

(

Rn

lp

)(k−
P8,11

i=n pi)(R10

lp

)l−k(
R11

lp

)(m9−k−l)

(3.50)

=
R

k−(p1+···+p8+p11)
1 R

k−(p2+···+p8+p11)
2 . . . R

k−p11
9 Rl−k

10 Rm9−k−l
11

l3m11
p

(3.51)

To find a convenient notation for the tension we divide through by the volume to remove

the radial dependencies, i.e. we divide by

Vp ≡ (2π)(10k−A)

Ω
R

k−(p1+···+p8+p11)
1 R

k−(p2+···+p8+p11)
2 . . . R

k−p11
9 R̂k

10 (3.52)

This contains the volume of the compact spacetime torus as a factor and as before we record

remaining powers of 2πR in a factor, Ω. We have used the notation R̂10 ≡ l3p
R10R11

[15]
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so that,

Tβ =
Ω

(2π)2m9−1ĝl
sl

2m9
s

(3.53)

Where we have used the IIB parameters l2s =
l3p

R11
and ĝs = R11

R10
. If, as before, we define

# ≡ 10k − A = 2m9 − 1 then we have,

Tβ =
Ω

(2π)#ĝl
sl

#+1
s

(3.54)

As before, in the case where k =
∑

i pi, # is the number of indices on the corresponding

generator in the algebra. We now may single out the tensions with a single ĝs appearing.

In this case we are looking for roots with l = m10 = 1. Now # = 2m9 − 1. Therefore

we note that the charges we will find matching this criteria will have an odd number of

indices if they exist in the algebra. Specifically where k =
∑

i pi and where only a single

pi is nonzero and equal to one we have k = 1 and we must solve 2m9 = 11 − A ≥ 0 which

has solutions for A = 1, 3, 5, 7, 9 corresponding to the D9, D7, D5, D3, D1 brane solutions.

Excluding the D1 brane we have for each Dp-brane, p(10−p) = 1 with all other pi = 0. For

the D1 brane we have p11 = 1 and all other pi = 0. Therefore for these cases, we have

# = p where p is odd and less than ten, we find,

TβDp
=

1

(2π)pgsl
p+1
s

(3.55)

Which is the tension formula for the RR D-brane charges of the IIB theory. Furthermore

we may apply the S-duality transformation to the IIB theory which corresponds to the

Weyl reflection in the plane perpendicular to the α10 root vector:

S10β = β − (2l − m9)α10 (3.56)

That is l → m9 − l, leaving β2 in equation (1.58) unaltered, as expected, but altering the

tension formula to:

T ′
βDp

=
1

(2π)pgm9−1
s l

p+1
s

(3.57)

This formula could also be obtained using equation (3.12) for the Weyl reflection of the

mass formula. Explicitly we have,

Z ′
βDp

≡ ZS10(βDp) = ZβDp
exp (−(−q9 + 2q10)(α10 · βDp)) (3.58)

Using the parameters of solution given in section 1.3 we have,

α10 · β = −m9 + 2m10 = −q (3.59)

We recall that in general q is an integer taking values less than or equal to the coefficient,

m9, but in the particular set of solutions we are considering here q = m9 − 2. Let us

translate the −q9 + 2q10 into the coordinates pa, using the transformation matrix (ρ−1)T

from section 3.2 we read off,

q9 = −1

3
(4(p∗ + p1 + · · · p9) + 7(p10 + p11)) (3.60)

q10 = −1

3
(2(p∗ + p1 + · · · p10) + 5p11)) (3.61)
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So that,

−q9 + 2q10 = p10 − p11 = ln

(

R10

R11

)

= ln

(

1

gs

)

(3.62)

Substituting back into our expression for ZS10(β) an dividing by Vp ∼ (2πR)p to find the

tension we obtain,

TS10(βDp) = TβDp

(

1

gs

)q

=
1

(2π)pg1+q
s l

p+1
s

(3.63)

In the case we have been concerned with the parameters take specific values, l = 1 and so

q = m9 − 2 and the expression is identical to the S-dual tension derived previously.

We may use this form of the tension to write down the tensions of the S-dual states

to the Dp-branes of the IIB theory, explicitly the F1 string, the NS5 brane, the S7 brane

and the S9 brane. Notice that the tension of the D3 brane is mapped to itself by S-duality.

Explicitly we find,

TβF1
=

1

2πl2s
(3.64)

TβNS5
=

1

(2π)5g2
s l

6
s

(3.65)

TβS7
=

1

(2π)7g3
s l

8
s

(3.66)

TβS9
=

1

(2π)9g4
s l

10
s

(3.67)

In addition there are two further 9-brane states making up the charge Za1...a9(αβγ),

these are S-dual to each other and have tensions:

Tβ9 =
1

(2π)9g2
s l

10
s

(3.68)

Tβ9 =
1

(2π)9g3
s l

10
s

(3.69)

Let us also identify the weights in the l1 representation corresponding to the KK-branes

of the IIB theory given in [21], namely the D16,D34 and D52 which are all derived from the

D7 brane by U-duality transformations. From table 27 in the appendix we may read off:

βD16 = e∗ + 2(e4 + · · · + e10) + 3e11 ZD07 =
(R4 . . . R10)

2

g3
s l

15
s

(3.70)

βD34 = e∗ + (e4 + e5) + 2(e6 + · · · e11) ZD25 =
R4R5(R6 . . . R10)

2

g3
s l

13
s

βD52 = e∗ + (e4 + · · · + e7) + 2(e8 + · · · e10) + e11 ZD43 =
R4 . . . R7(R8 . . . R10)

2

g3
s l

11
s

One can use the parametner k to classify the KK-brane solutions; in the IIB decomposition

m10−k is the coefficient of e10. The full set of Dpi branes, where i indicates the number of

directions with a Taub-NUT fibration, corresponds to all the weights in the l1 representation

having k = 2 and is shown in table 24.
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Level Dpi Mass E12 Root Root length

(m9,m10) (ei basis) squared

(4, 2) D51
R5R6R7R8R9R̂2

10
g2

s l8s
(1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0) 2

(5, 2) D52
R4R5R6R7R8R2

9R̂2
10

g2
s l10s

(1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 1) 2

(5, 2) D71
R3R4R5R6R7R8R9R̂2

10
g2

s l10s
(1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) 0

(5, 3) D52
R4R5R6R7R8R2

9R̂2
10

g3
s l10s

(1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 0) 2

(5, 3) D71
R3R4R5R6R7R8R9R̂2

10
g3

s l10s
(1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0) 0

(6, 2) D91
R1R2R3R4R5R6R7R8R9R̂2

10
g2

s l12s
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2) −2

(6, 2) D53
R3R4R5R6R7R2

8R2
9R̂2

10
g2

s l12s
(1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 0, 2) 2

(6, 2) D72
R2R3R4R5R6R7R8R2

9R̂2
10

g2
s l12s

(1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2) 0

(6, 3) D91
R1R2R3R4R5R6R7R8R9R̂2

10
g3

s l12s
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) −4

(6, 3) D34
R4R5R6R2

7R2
8R2

9R̂2
10

g3
s l12s

(1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 1, 1) 2

(6, 3) D53
R3R4R5R6R7R2

8R2
9R̂2

10
g3

s l12s
(1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1) 0

(6, 3) D72
R2R3R4R5R6R7R8R2

9R̂2
10

g3
s l12s

(1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) −2

(6, 4) D91
R1R2R3R4R5R6R7R8R9R̂2

10
g4

s l12s
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0) −2

(6, 4) D53
R3R4R5R6R7R2

8R2
9R̂2

10
g4

s l12s
(1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 0) 2

(6, 4) D72
R2R3R4R5R6R7R8R2

9R̂2
10

g4
s l12s

(1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0) 0

(7, 2) D73
R1R2R3R4R5R6R7R2

8R2
9R̂2

10
g2

s l14s
(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 3) 0

(7, 2) D54
R2R3R4R5R6R2

7R2
8R2

9R̂2
10

g2
s l14s

(1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 0, 3) 2

(7, 3) D73
R1R2R3R4R5R6R7R2

8R2
9R̂2

10
g3

s l14s
(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2) −4

(7, 3) D16
R4R2

5R2
6R2

7R2
8R2

9R̂2
10

g3
s l14s

(1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 1, 2) 2

(7, 3) D35
R3R4R5R2

6R2
7R2

8R2
9R̂2

10
g3

s l14s
(1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 1, 2) 0

(7, 3) D54
R2R3R4R5R6R2

7R2
8R2

9R̂2
10

g3
s l14s

(1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2) −2

(7, 4) D73
R1R2R3R4R5R6R7R2

8R2
9R̂2

10
g4

s l14s
(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1) −4

(7, 4) D16
R4R2

5R2
6R2

7R2
8R2

9R̂2
10

g4
s l14s

(1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 1) 2

(7, 4) D35
R3R4R5R2

6R2
7R2

8R2
9R̂2

10
g4

s l14s
(1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1) 0

(7, 4) D54
R2R3R4R5R6R2

7R2
8R2

9R̂2
10

g4
s l14s

(1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1) −2

(7, 5) D73
R1R2R3R4R5R6R7R2

8R2
9R̂2

10
g5

s l14s
(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 0) 0

(7, 5) D54
R2R3R4R5R6R2

7R2
8R2

9R̂2
10

g5
s l14s

(1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 0) 2

(8, 2) D55
R1R2R3R4R5R2

6R2
7R2

8R2
9R̂2

10
g2

s l16s
(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 4) 2

(8, 3) D55
R1R2R3R4R5R2

6R2
7R2

8R2
9R̂2

10
g3

s l16s
(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3) −4

Table 24 — Continued on next page
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Table 24 — Continued from previous page

Level Dpi Mass E12 Root Root length

(m9,m10) (ei basis) squared

(8, 3) D17
R3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g3

s l16s
(1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 1, 3) 0

(8, 3) D36
R2R3R4R2

5R2
6R2

7R2
8R2

9R̂2
10

g3
s l16s

(1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 3) −2

(8, 4) D55
R1R2R3R4R5R2

6R2
7R2

8R2
9R̂2

10
g4

s l16s
(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2) −6

(8, 4) D17
R3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g4

s l16s
(1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2) −2

(8, 4) D36
R2R3R4R2

5R2
6R2

7R2
8R2

9R̂2
10

g4
s l16s

(1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2) −4

(8, 5) D55
R1R2R3R4R5R2

6R2
7R2

8R2
9R̂2

10
g5

s l16s
(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 1) −4

(8, 5) D17
R3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g5

s l16s
(1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 3, 1) 0

(8, 5) D36
R2R3R4R2

5R2
6R2

7R2
8R2

9R̂2
10

g5
s l16s

(1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1) −2

(8, 6) D55
R1R2R3R4R5R2

6R2
7R2

8R2
9R̂2

10
g6

s l16s
(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 0) 2

(9, 3) D37
R1R2R3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g3

s l18s
(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 4) −4

(9, 3) D18
R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R̂2
10

g3
s l18s

(1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 1, 4) −2

(9, 4) D37
R1R2R3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g4

s l18s
(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3) −8

(9, 4) D18
R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R̂2
10

g4
s l18s

(1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3) −6

(9, 5) D37
R1R2R3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g5

s l18s
(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2) −8

(9, 5) D18
R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R̂2
10

g5
s l18s

(1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2) −6

(9, 6) D37
R1R2R3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g6

s l18s
(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 1) −4

(9, 6) D18
R2R2

3R2
4R2

5R2
6R2

7R2
8R2

9R̂2
10

g6
s l18s

(1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 4, 1) −2

(10, 3) D19
R1R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g3

s l20s
(1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 5) −4

(10, 4) D19
R1R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g4

s l20s
(1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4) −10

(10, 5) D19
R1R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g5

s l20s
(1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) −12

(10, 6) D19
R1R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g6

s l20s
(1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2) −10

(10, 7) D19
R1R2

2R2
3R2

4R2
5R2

6R2
7R2

8R2
9R̂2

10
g7

s l20s
(1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 5, 1) −4

Table 24: The full set of IIB Dpi branes from the l1 representation of E11.

4. Conclusion

In this paper we have identified the U-duality brane charge multiplets within the l1 repre-

sentation and given explicitly the weights associated to the particle, string and membrane

multiplets when D=3,4,5,6,7,8 - this is a generalisation of the results of [11]. We have

also introduced a tension formula that associates a tension to each root in the E12 root

lattice, the lattice natural to the l1 representation of E11. The tension formula can be
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readily extended to other infinite dimensional algebras. The formula was constructed by

introducing a dimensionful parameter into the l1 representation of E11, associated to the

extra node (denoted in this paper with a ”*”) of the E12 Dynkin diagram that differentiates

it from the E11 diagram. The tension formula reproduced the tensions of the pp-wave, the

M2-brane, the M5-brane and the KK6 monopole of M-theory from the associated weights

in the l1 algebra. Furthermore all the tensions of the Dp-branes of IIA and IIB superstring

theories were also found, together with the correct powers of the string coupling constant,

gs, and the string length, ls. The tension formula was also applied to all the states in the

particle and string charge multiplets for comparison with previously known results. The

dimensionful parameter introduced was found to correctly reproduce all the known masses

of the U-duality brane charge multiplets presented in [6 – 10]. The formula was then ap-

plied to the charge multiplet of the membrane and the corresponding masses were given.

It would be illuminating to analyse the content of other G+++ algebras using the same

construction. This would be especially interesting for the pure gravitational Kac-Moody

algebra A+++
D−3 and the algebra associated to the bosonic string, K27 ≡ D+++

24 .

One consequence of the tension formula is the observation that almost all the content

of E11 is associated to KK-branes (or monopoles). This interpretation is based on the ob-

servation that the tension of KK-branes is divergent when the spacetime is decompactified.

Given the l1 representation of E11 we can calculate for any of the charges an associated

mass and tension. The tension is found by dividing the mass by a volume, Vp ∼ (2πR)p.

For branes the tension is independent of a radius of compactification, in the cases where the

tension remains dependent on the compact radii the associated solution is a KK-brane. A

familiar example is generalisation of the Taub-NUT solution to eleven dimensions, which is

also called the KK6-brane and is associated to the dual gravity field. The charge conserved

by the dual gravity field appears in the l1 representation at level three in the algebraic

decomposition. The root in the E12 lattice is:

βKK6 ≡ α∗ + α1 + · · ·α4 + 2α5 + 3α6 + 4α7 + 5α8 + 3α9 + α10 + 3α11 (4.1)

= (e5 + · · · e10 + 2e11) (4.2)

Using the formula of equation (3.10) the mass of this root is found.

ZβKK6
=

R5 . . . R10R
2
11

l9p
(4.3)

For convenience we analyse the solution when it is compactified on a seven-torus and the

tension of the solution may be found by dividing the mass by (2π)7R5 . . . R11:

TβKK6
=

R11

(2π)7l9p
(4.4)

Evidently this result does not carry naturally back into the uncompactified eleven di-

mensional spacetime and diverges when R11 is decompactified. The diverging tension in

uncompactified spacetime is the signature of a KK-brane. For most of the weights of E11

appearing in the l1 representation, in fact all those associated to a mixed symmetry field,
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the tension found by using equation (3.10) is divergent in the non-compact spacetime. In

this sense much of the l1 representation, being composed mostly of mixed symmetry fields,

is associated to KK-brane charges. One may say that KK-brane charges are the rule and

their vanishing in the case of the M2, M5 and pp-wave charges are the exceptions.

We have been able to classify the KK-brane charges that appear in the l1 algebra since

they are directly related to the parameter, k, appearing in the algebraic decomposition of

section 1 of this paper. We recall that this parameter played a twofold role of counting the

number of blocks of antisymmetric indices as well as controlling the blocks of eleven anti-

symmetric indices, or volume forms ǫ, appearing in the generators of the l1 representation

of E11. The KK-branes may be labelled by the powers of the radii appearing in the mass

formula. The most studied class of KK-branes, labelled Dpi in the literature, have a mass

which is quadratic in the spatial radii and may be labelled by two integers corresponding

to the number of linear, p, and squared radii, i, respectively. In tables 22, 23 and 24 we list

the full set of such Dpi brane charges in the l1 representation of E11 relevant to M-theory,

the IIA theory and the IIB theory including the charges of KK-branes previously found by

U-duality transformations of the D7 brane charge in [21]. The role played by KK-branes

is unclear. A simple interpretation of the KK-brane charges of M-theory is that they give

an eleven dimensional origin to the Dp-brane charges (p > 5) of IIA and IIB string theory

upon dimensional reduction as well as other KK-brane charges. However, whether they

play a more important part than simply book-keeping the branes, and also winding and

KK-modes that appear from duality arguments in lower dimensional theories remains to

be seen. One may hope that the extra KK-brane tower of states, being non-perturbative,

may reveal significant details about the kinematics and dynamics of the E11 fields. More

simply, since the prototype KK-brane is the dual graviton their further investigation may

shed more light on the dual gravity theories.

An interesting infinite class of roots in the adjoint of E11 which corresponds to gener-

ators with no blocks of ten or eleven antisymmetrised indices has recently been completely

found [20] and it was highlighted that E11 contained all the dualised versions of the tensors

of massless dualised supergravity. The fields in this class of roots have associated generators

taking the form,

Ka1
1...a1

9,...an
1 ...an

9 ,b
c, R

a1
1...a1

9,...an
1 ...an

9 ,j1j2j3 , Ra1
1...a1

9,...an
1 ...an

9 ,j1...j6 , Ra1
1...a1

9,...an
1 ...an

9 ,j1...j8,k (4.5)

Where n ≥ 0. At first sight these generators, being all representations of the little group

in eleven dimensions, SO(9), appear to indicate all possible massless dual solutions in the

algebra, but if we consider the charges associated to these roots in the l1 representation we

find that they have different ”masses”, namely,

V n

l9n
p R11

,
V nR10R11

l9n+3
p

,
V nR7R8R9R10R11

l9n+6
p

,
V nR5 . . . R10R

2
11

l9n+9
p

(4.6)

Where V = R3 . . . R11. For the case where n = 0 three of the tensions, given by division by

(2π)9V , are well-defined and the fourth, which is the KK6 brane tension diverges. However

for the other roots in this class (n > 0) the tensions all diverge in the non-compact setting

which may indicate some difference in their nature. Using the techniques of [4, 13] one
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can write down a line element associated to a half-BPS brane solution for each of the dual

roots in the adjoint of E11. The set of roots are:

βpp∗ = α10 + nβ0 (4.7)

βM2∗ = α11 + nβ0 (4.8)

βM5∗ = α6 + 2α7 + 3α8 + 2α9 + α10 + 2α11 + nβ0 (4.9)

βKK6∗ = α4 + 2α5 + 3α6 + 4α7 + 5α8 + 3α9 + α10 + 3α11 + nβ0 (4.10)

Where,

β0 ≡ α3 + 2α4 + 3α5 + 4α6 + 5α7 + 6α8 + 4α9 + 2α10 + 3α11 (4.11)

is the root controlling the blocks of nine antisymmetric indices in the dual generators.

For reference,

Zβ0 =
R3 . . . R11

l9p
=

R1R2R3

G11
(4.12)

The line elements corresponding to the set of dual roots are,

ds2
pp∗ = (1 + K)ndx̄2

2 − (1 − K)(dt2) + (1 + K)dy2 − 2Kdtdy + dΣ2
7 (4.13)

ds2
M2∗ = N (n+ 1

3
)(dx̄2

2) + N
1
3 (dx̄2

6) + N− 2
3 (dȳ2

2 − dt2) (4.14)

ds2
M5∗ = N (n+ 2

3
)(dx̄2

2) + N
2
3 (dx̄2

3) + N− 1
3 (dȳ2

5 − dt2) (4.15)

ds2
KK6∗ = N (n+1)(dx̄2

2) + N(dy2) + N−1(−dt2) + dΣ2
7 (4.16)

Where dΣ2
7 denotes a seven dimensional Euclidean line element. These volume elements

are dependent on n, the number of blocks of nine antisymmetric indices appearing in the

generator of the associated dual roots. It would be interesting to study this class of roots

further.
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A. Low level weights in the l1 representation of E11 relevant to 11D, IIA

and IIB SuGra

Level A10 weights E12 Root E12 Root Root length

(m11) (αi basis) (ei basis) squared

0 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 2

1 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) 2

2 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2) (1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 2

3 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] (1, 1, 1, 1, 2, 3, 4, 5, 6, 4, 2, 3) (1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) 0

3 [0, 0, 0, 1, 0, 0, 0, 0, 0, 1] (1, 1, 1, 1, 1, 2, 3, 4, 5, 3, 1, 3) (1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2) 2

4 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0] (1, 1, 1, 1, 2, 3, 4, 5, 6, 4, 2, 4) (1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2) 2

4 [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] (1, 1, 1, 2, 3, 4, 5, 6, 7, 4, 2, 4) (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2) 0

4 [1, 0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 2, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2) −2

4 [0, 1, 0, 0, 0, 0, 0, 0, 0, 2] (1, 1, 1, 2, 3, 4, 5, 6, 7, 4, 1, 4) (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 3) 2

5 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 3, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2) −4

5 [0, 0, 1, 0, 1, 0, 0, 0, 0, 0] (1, 1, 1, 1, 2, 3, 5, 7, 9, 6, 3, 5) (1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2) 2

5 [0, 1, 0, 0, 0, 1, 0, 0, 0, 0] (1, 1, 1, 2, 3, 4, 5, 7, 9, 6, 3, 5) (1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2) 0

5 [1, 0, 0, 0, 0, 0, 1, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 9, 6, 3, 5) (1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2) −2

5 [0, 0, 0, 0, 0, 0, 0, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 2, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3) −2

5 [0, 1, 0, 0, 0, 0, 1, 0, 0, 1] (1, 1, 1, 2, 3, 4, 5, 6, 8, 5, 2, 5) (1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3) 2

5 [1, 0, 0, 0, 0, 0, 0, 0, 2, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 4, 2, 5) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3) 2

5 [1, 0, 0, 0, 0, 0, 0, 1, 0, 1] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 2, 5) (1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3) 0

5 [0, 0, 0, 0, 0, 0, 0, 0, 0, 3] (1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 1, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4) 2

6 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 4, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2) −6

6 [0, 1, 1, 0, 0, 0, 0, 0, 0, 0] (1, 1, 1, 2, 4, 6, 8, 10, 12, 8, 4, 6) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2) −2

6 [1, 0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 8, 4, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2) −4

6 [0, 0, 0, 0, 0, 0, 0, 2, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 3, 6) (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3) 0

6 [0, 0, 0, 0, 0, 0, 1, 0, 1, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 6, 3, 6) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3) −2

6 [0, 0, 0, 0, 0, 1, 0, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 9, 11, 7, 3, 6) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3) −4

6 [0, 0, 2, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 1, 3, 5, 7, 9, 11, 7, 3, 6) (1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 3) 2

6 [0, 1, 0, 0, 1, 0, 0, 0, 1, 0] (1, 1, 1, 2, 3, 4, 6, 8, 10, 6, 3, 6) (1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3) 2

6 [0, 1, 0, 1, 0, 0, 0, 0, 0, 1] (1, 1, 1, 2, 3, 5, 7, 9, 11, 7, 3, 6) (1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3) 0

6 [1, 0, 0, 0, 0, 0, 1, 1, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 9, 6, 3, 6) (1, 0, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3) 2

6 [1, 0, 0, 0, 0, 1, 0, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 6, 3, 6) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3) 0

6 [1, 0, 0, 0, 1, 0, 0, 0, 0, 1] (1, 1, 2, 3, 4, 5, 7, 9, 11, 7, 3, 6) (1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3) −2

6 [0, 0, 0, 0, 0, 0, 0, 1, 1, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 2, 6) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4) 2

6 [0, 0, 0, 0, 0, 0, 1, 0, 0, 2] (1, 2, 3, 4, 5, 6, 7, 8, 10, 6, 2, 6) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4) 0

6 [1, 0, 0, 0, 0, 1, 0, 0, 0, 2] (1, 1, 2, 3, 4, 5, 6, 8, 10, 6, 2, 6) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4) 2

7 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] (1, 2, 3, 5, 7, 9, 11, 13, 15, 10, 5, 7) (1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2) −10

7 [2, 0, 0, 0, 0, 0, 0, 0, 0, 0] (1, 1, 3, 5, 7, 9, 11, 13, 15, 10, 5, 7) (1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) −8

7 [0, 0, 0, 0, 0, 1, 1, 0, 0, 0] (1, 2, 3, 4, 5, 6, 7, 9, 12, 8, 4, 7) (1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3) −2

7 [0, 0, 0, 0, 1, 0, 0, 1, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 4, 7) (1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3) −4

7 [0, 0, 0, 1, 0, 0, 0, 0, 1, 0] (1, 2, 3, 4, 5, 7, 9, 11, 13, 8, 4, 7) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3) −6

7 [0, 0, 1, 0, 0, 0, 0, 0, 0, 1] (1, 2, 3, 4, 6, 8, 10, 12, 14, 9, 4, 7) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3) −8

7 [0, 1, 0, 1, 0, 0, 1, 0, 0, 0] (1, 1, 1, 2, 3, 5, 7, 9, 12, 8, 4, 7) (1, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3) 2

7 [0, 1, 1, 0, 0, 0, 0, 1, 0, 0] (1, 1, 1, 2, 4, 6, 8, 10, 12, 8, 4, 7) (1, 0, 0, 1, 2, 2, 2, 2, 2, 3, 3, 3) 0

7 [0, 2, 0, 0, 0, 0, 0, 0, 1, 0] (1, 1, 1, 3, 5, 7, 9, 11, 13, 8, 4, 7) (1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 3, 3) −2

7 [1, 0, 0, 0, 0, 2, 0, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 9, 12, 8, 4, 7) (1, 0, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3) 2

7 [1, 0, 0, 0, 1, 0, 1, 0, 0, 0] (1, 1, 2, 3, 4, 5, 7, 9, 12, 8, 4, 7) (1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3) 0

7 [1, 0, 0, 1, 0, 0, 0, 1, 0, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 8, 4, 7) (1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3) −2

7 [1, 0, 1, 0, 0, 0, 0, 0, 1, 0] (1, 1, 2, 3, 5, 7, 9, 11, 13, 8, 4, 7) (1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3) −4

7 [1, 1, 0, 0, 0, 0, 0, 0, 0, 1] (1, 1, 2, 4, 6, 8, 10, 12, 14, 9, 4, 7) (1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3) −6

7 [0, 0, 0, 0, 0, 0, 2, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 11, 7, 3, 7) (1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 4) 2

7 [0, 0, 0, 0, 0, 1, 0, 0, 2, 0] (1, 2, 3, 4, 5, 6, 7, 9, 11, 6, 3, 7) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4) 2

7 [0, 0, 0, 0, 0, 1, 0, 1, 0, 1] (1, 2, 3, 4, 5, 6, 7, 9, 11, 7, 3, 7) (1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4) 0

7 [0, 0, 0, 0, 1, 0, 0, 0, 1, 1] (1, 2, 3, 4, 5, 6, 8, 10, 12, 7, 3, 7) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4) −2

7 [0, 0, 0, 1, 0, 0, 0, 0, 0, 2] (1, 2, 3, 4, 5, 7, 9, 11, 13, 8, 3, 7) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4) −4

7 [0, 1, 1, 0, 0, 0, 0, 0, 1, 1] (1, 1, 1, 2, 4, 6, 8, 10, 12, 7, 3, 7) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 3, 4) 2
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Level A10 weights E12 Root E12 Root Root length

(m11) (αi basis) (ei basis) squared

7 [0, 2, 0, 0, 0, 0, 0, 0, 0, 2] (1, 1, 1, 3, 5, 7, 9, 11, 13, 8, 3, 7) (1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 4) 0

7 [1, 0, 0, 0, 1, 0, 0, 1, 0, 1] (1, 1, 2, 3, 4, 5, 7, 9, 11, 7, 3, 7) (1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4) 2

7 [1, 0, 0, 1, 0, 0, 0, 0, 1, 1] (1, 1, 2, 3, 4, 6, 8, 10, 12, 7, 3, 7) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4) 0

7 [1, 0, 1, 0, 0, 0, 0, 0, 0, 2] (1, 1, 2, 3, 5, 7, 9, 11, 13, 8, 3, 7) (1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4) −2

7 [0, 0, 0, 0, 1, 0, 0, 0, 0, 3] (1, 2, 3, 4, 5, 6, 8, 10, 12, 7, 2, 7) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 5) 2

8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 3, 5, 7, 9, 11, 13, 15, 17, 11, 5, 8) (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3) −14

8 [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 9, 12, 15, 10, 5, 8) (1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3) −4

8 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0] (1, 2, 3, 4, 5, 7, 9, 12, 15, 10, 5, 8) (1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3) −6

8 [0, 0, 1, 0, 0, 0, 1, 0, 0, 0] (1, 2, 3, 4, 6, 8, 10, 12, 15, 10, 5, 8) (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3) −8

8 [0, 1, 0, 0, 0, 0, 0, 1, 0, 0] (1, 2, 3, 5, 7, 9, 11, 13, 15, 10, 5, 8) (1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3) −10

8 [0, 1, 0, 2, 0, 0, 0, 0, 0, 0] (1, 1, 1, 2, 3, 6, 9, 12, 15, 10, 5, 8) (1, 0, 0, 1, 1, 3, 3, 3, 3, 3, 3, 3) 2

8 [0, 1, 1, 0, 1, 0, 0, 0, 0, 0] (1, 1, 1, 2, 4, 6, 9, 12, 15, 10, 5, 8) (1, 0, 0, 1, 2, 2, 3, 3, 3, 3, 3, 3) 0

8 [0, 2, 0, 0, 0, 1, 0, 0, 0, 0] (1, 1, 1, 3, 5, 7, 9, 12, 15, 10, 5, 8) (1, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 3) −2

8 [1, 0, 0, 0, 0, 0, 0, 0, 1, 0] (1, 2, 4, 6, 8, 10, 12, 14, 16, 10, 5, 8) (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) −12

8 [1, 0, 0, 1, 1, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 6, 9, 12, 15, 10, 5, 8) (1, 0, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3) −2

8 [1, 0, 1, 0, 0, 1, 0, 0, 0, 0] (1, 1, 2, 3, 5, 7, 9, 12, 15, 10, 5, 8) (1, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3) −4

8 [1, 1, 0, 0, 0, 0, 1, 0, 0, 0] (1, 1, 2, 4, 6, 8, 10, 12, 15, 10, 5, 8) (1, 0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3) −6

8 [2, 0, 0, 0, 0, 0, 0, 1, 0, 0] (1, 1, 3, 5, 7, 9, 11, 13, 15, 10, 5, 8) (1, 0, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3) −8

8 [0, 0, 0, 0, 0, 2, 0, 0, 1, 0] (1, 2, 3, 4, 5, 6, 7, 10, 13, 8, 4, 8) (1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 4, 4) 2

8 [0, 0, 0, 0, 1, 0, 0, 2, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 4, 8) (1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4) 2

8 [0, 0, 0, 0, 1, 0, 1, 0, 1, 0] (1, 2, 3, 4, 5, 6, 8, 10, 13, 8, 4, 8) (1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4) 0

8 [0, 0, 0, 0, 1, 1, 0, 0, 0, 1] (1, 2, 3, 4, 5, 6, 8, 11, 14, 9, 4, 8) (1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4) −2

8 [0, 0, 0, 1, 0, 0, 0, 1, 1, 0] (1, 2, 3, 4, 5, 7, 9, 11, 13, 8, 4, 8) (1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4) −2

8 [0, 0, 0, 1, 0, 0, 1, 0, 0, 1] (1, 2, 3, 4, 5, 7, 9, 11, 14, 9, 4, 8) (1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4) −4

8 [0, 0, 1, 0, 0, 0, 0, 0, 2, 0] (1, 2, 3, 4, 6, 8, 10, 12, 14, 8, 4, 8) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 4) −4

8 [0, 0, 1, 0, 0, 0, 0, 1, 0, 1] (1, 2, 3, 4, 6, 8, 10, 12, 14, 9, 4, 8) (1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4) −6

8 [0, 1, 0, 0, 0, 0, 0, 0, 1, 1] (1, 2, 3, 5, 7, 9, 11, 13, 15, 9, 4, 8) (1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4) −8

8 [0, 1, 1, 0, 0, 1, 0, 0, 0, 1] (1, 1, 1, 2, 4, 6, 8, 11, 14, 9, 4, 8) (1, 0, 0, 1, 2, 2, 2, 3, 3, 3, 3, 4) 2

8 [0, 2, 0, 0, 0, 0, 0, 1, 1, 0] (1, 1, 1, 3, 5, 7, 9, 11, 13, 8, 4, 8) (1, 0, 0, 2, 2, 2, 2, 2, 2, 3, 4, 4) 2

8 [0, 2, 0, 0, 0, 0, 1, 0, 0, 1] (1, 1, 1, 3, 5, 7, 9, 11, 14, 9, 4, 8) (1, 0, 0, 2, 2, 2, 2, 2, 3, 3, 3, 4) 0

8 [1, 0, 0, 0, 0, 0, 0, 0, 0, 2] (1, 2, 4, 6, 8, 10, 12, 14, 16, 10, 4, 8) (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4) −10

8 [1, 0, 0, 0, 2, 0, 0, 0, 0, 1] (1, 1, 2, 3, 4, 5, 8, 11, 14, 9, 4, 8) (1, 0, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4) 2

8 [1, 0, 0, 1, 0, 0, 1, 0, 1, 0] (1, 1, 2, 3, 4, 6, 8, 10, 13, 8, 4, 8) (1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4) 2

8 [1, 0, 0, 1, 0, 1, 0, 0, 0, 1] (1, 1, 2, 3, 4, 6, 8, 11, 14, 9, 4, 8) (1, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4) 0

8 [1, 0, 1, 0, 0, 0, 0, 1, 1, 0] (1, 1, 2, 3, 5, 7, 9, 11, 13, 8, 4, 8) (1, 0, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4) 0

8 [1, 0, 1, 0, 0, 0, 1, 0, 0, 1] (1, 1, 2, 3, 5, 7, 9, 11, 14, 9, 4, 8) (1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4) −2

8 [1, 1, 0, 0, 0, 0, 0, 0, 2, 0] (1, 1, 2, 4, 6, 8, 10, 12, 14, 8, 4, 8) (1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 4, 4) −2

8 [1, 1, 0, 0, 0, 0, 0, 1, 0, 1] (1, 1, 2, 4, 6, 8, 10, 12, 14, 9, 4, 8) (1, 0, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4) −4

8 [2, 0, 0, 0, 0, 0, 0, 0, 1, 1] (1, 1, 3, 5, 7, 9, 11, 13, 15, 9, 4, 8) (1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) −6

8 [0, 0, 0, 0, 1, 0, 1, 0, 0, 2] (1, 2, 3, 4, 5, 6, 8, 10, 13, 8, 3, 8) (1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 5) 2

8 [0, 0, 0, 1, 0, 0, 0, 0, 2, 1] (1, 2, 3, 4, 5, 7, 9, 11, 13, 7, 3, 8) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 5) 2

8 [0, 0, 0, 1, 0, 0, 0, 1, 0, 2] (1, 2, 3, 4, 5, 7, 9, 11, 13, 8, 3, 8) (1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5) 0

8 [0, 0, 1, 0, 0, 0, 0, 0, 1, 2] (1, 2, 3, 4, 6, 8, 10, 12, 14, 8, 3, 8) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 5) −2

Table 25: Low level weights in the 11D supergravity decomposition of the l1 representation

of E11

Level A9 weights E12 Root E12 Root Root length

(m10, m11) (αi basis) (ei basis) squared

(0, 0) [1, 0, 0, 0, 0, 0, 0, 0, 0] (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 2

(1, 0) [0, 0, 0, 0, 0, 0, 0, 0, 0] (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1) 2

(0, 1) [0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) 2

(1, 1) [0, 0, 0, 0, 0, 0, 0, 1, 0] (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0) 2

(1, 2) [0, 0, 0, 0, 0, 1, 0, 0, 0] (1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2) (1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 2
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Level A9 weights E12 Root E12 Root Root length

(m10, m11) (αi basis) (ei basis) squared

(2, 2) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 2) (1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0) 2

(1, 3) [0, 0, 0, 1, 0, 0, 0, 0, 0] (1, 1, 1, 1, 1, 2, 3, 4, 5, 3, 1, 3) (1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2) 2

(2, 3) [0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 1, 1, 1, 2, 3, 4, 5, 6, 4, 2, 3) (1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) 0

(2, 3) [0, 0, 0, 1, 0, 0, 0, 0, 1] (1, 1, 1, 1, 1, 2, 3, 4, 5, 3, 2, 3) (1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1) 2

(3, 3) [0, 1, 0, 0, 0, 0, 0, 0, 0] (1, 1, 1, 2, 3, 4, 5, 6, 7, 5, 3, 3) (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0) 0

(3, 3) [0, 0, 1, 0, 0, 0, 0, 0, 1] (1, 1, 1, 1, 2, 3, 4, 5, 6, 4, 3, 3) (1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0) 2

(4, 3) [1, 0, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 6, 4, 3) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,−1) 2

(1, 4) [0, 1, 0, 0, 0, 0, 0, 0, 0] (1, 1, 1, 2, 3, 4, 5, 6, 7, 4, 1, 4) (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 3) 2

(2, 4) [1, 0, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 2, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2) −2

(2, 4) [0, 0, 1, 0, 0, 0, 0, 1, 0] (1, 1, 1, 1, 2, 3, 4, 5, 6, 4, 2, 4) (1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2) 2

(2, 4) [0, 1, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 2, 3, 4, 5, 6, 7, 4, 2, 4) (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2) 0

(3, 4) [0, 0, 0, 0, 0, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 3, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) −4

(3, 4) [0, 0, 1, 0, 0, 0, 1, 0, 0] (1, 1, 1, 1, 2, 3, 4, 5, 7, 5, 3, 4) (1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1) 2

(3, 4) [0, 1, 0, 0, 0, 0, 0, 1, 0] (1, 1, 1, 2, 3, 4, 5, 6, 7, 5, 3, 4) (1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1) 0

(3, 4) [1, 0, 0, 0, 0, 0, 0, 0, 1] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 3, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1) −2

(3, 4) [0, 1, 0, 0, 0, 0, 0, 0, 2] (1, 1, 1, 2, 3, 4, 5, 6, 7, 4, 3, 4) (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 3, 1) 2

(4, 4) [0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 4, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0) −2

(4, 4) [0, 1, 0, 0, 0, 0, 1, 0, 0] (1, 1, 1, 2, 3, 4, 5, 6, 8, 6, 4, 4) (1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 0) 2

(4, 4) [1, 0, 0, 0, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 6, 4, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0) 0

(4, 4) [1, 0, 0, 0, 0, 0, 0, 0, 2] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 4, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0) 2

(5, 4) [0, 0, 0, 0, 0, 0, 0, 1, 0] (1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 5, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,−1) 2

(1, 5) [0, 0, 0, 0, 0, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 1, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4) 2

(2, 5) [0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 2, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3) −2

(2, 5) [0, 1, 0, 0, 0, 0, 1, 0, 0] (1, 1, 1, 2, 3, 4, 5, 6, 8, 5, 2, 5) (1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3) 2

(2, 5) [1, 0, 0, 0, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 2, 5) (1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3) 0

(2, 5) [1, 0, 0, 0, 0, 0, 0, 0, 2] (1, 1, 2, 3, 4, 5, 6, 7, 8, 4, 2, 5) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3) 2

(3, 5) [0, 0, 0, 0, 0, 0, 0, 1, 0] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 3, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2) −4

(3, 5) [0, 0, 1, 0, 1, 0, 0, 0, 0] (1, 1, 1, 1, 2, 3, 5, 7, 9, 6, 3, 5) (1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2) 2

(3, 5) [0, 1, 0, 0, 0, 1, 0, 0, 0] (1, 1, 1, 2, 3, 4, 5, 7, 9, 6, 3, 5) (1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2) 0

(3, 5) [1, 0, 0, 0, 0, 0, 1, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 9, 6, 3, 5) (1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2) −2

(3, 5) [0, 0, 0, 0, 0, 0, 0, 0, 2] (1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 3, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2) −2

(3, 5) [0, 1, 0, 0, 0, 0, 1, 0, 1] (1, 1, 1, 2, 3, 4, 5, 6, 8, 5, 3, 5) (1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 2) 2

(3, 5) [1, 0, 0, 0, 0, 0, 0, 1, 1] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 3, 5) (1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2) 0

(4, 5) [0, 0, 0, 0, 0, 0, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 7, 4, 5) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1) −4

(4, 5) [0, 0, 1, 1, 0, 0, 0, 0, 0] (1, 1, 1, 1, 2, 4, 6, 8, 10, 7, 4, 5) (1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 1) 2

(4, 5) [0, 1, 0, 0, 1, 0, 0, 0, 0] (1, 1, 1, 2, 3, 4, 6, 8, 10, 7, 4, 5) (1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1) 0

(4, 5) [1, 0, 0, 0, 0, 1, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 7, 4, 5) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1) −2

(4, 5) [0, 0, 0, 0, 0, 0, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 4, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1) −2

(4, 5) [0, 1, 0, 0, 0, 1, 0, 0, 1] (1, 1, 1, 2, 3, 4, 5, 7, 9, 6, 4, 5) (1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 1) 2

(4, 5) [1, 0, 0, 0, 0, 0, 0, 2, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 6, 4, 5) (1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1) 2

(4, 5) [1, 0, 0, 0, 0, 0, 1, 0, 1] (1, 1, 2, 3, 4, 5, 6, 7, 9, 6, 4, 5) (1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1) 0

(4, 5) [0, 0, 0, 0, 0, 0, 0, 0, 3] (1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 4, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1) 2

(5, 5) [0, 0, 0, 0, 0, 1, 0, 0, 0] (1, 2, 3, 4, 5, 6, 7, 9, 11, 8, 5, 5) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0) −2

(5, 5) [0, 1, 0, 1, 0, 0, 0, 0, 0] (1, 1, 1, 2, 3, 5, 7, 9, 11, 8, 5, 5) (1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 0) 2

(5, 5) [1, 0, 0, 0, 1, 0, 0, 0, 0] (1, 1, 2, 3, 4, 5, 7, 9, 11, 8, 5, 5) (1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0) 0

(5, 5) [0, 0, 0, 0, 0, 0, 0, 2, 0] (1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 5, 5) (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 0) 2

(5, 5) [0, 0, 0, 0, 0, 0, 1, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 10, 7, 5, 5) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 0) 0

(5, 5) [1, 0, 0, 0, 0, 1, 0, 0, 1] (1, 1, 2, 3, 4, 5, 6, 8, 10, 7, 5, 5) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 0) 2

(6, 5) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 9, 6, 5) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,−1) 2

(2, 6) [0, 0, 0, 0, 0, 0, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 6, 2, 6) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4) 0

(2, 6) [1, 0, 0, 0, 0, 1, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 6, 2, 6) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4) 2

(2, 6) [0, 0, 0, 0, 0, 0, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 2, 6) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4) 2

(3, 6) [0, 0, 0, 0, 0, 1, 0, 0, 0] (1, 2, 3, 4, 5, 6, 7, 9, 11, 7, 3, 6) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3) −4

(3, 6) [0, 0, 2, 0, 0, 0, 0, 0, 0] (1, 1, 1, 1, 3, 5, 7, 9, 11, 7, 3, 6) (1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 3) 2

(3, 6) [0, 1, 0, 1, 0, 0, 0, 0, 0] (1, 1, 1, 2, 3, 5, 7, 9, 11, 7, 3, 6) (1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3) 0
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Level A9 weights E12 Root E12 Root Root length

(m10, m11) (αi basis) (ei basis) squared

(3, 6) [1, 0, 0, 0, 1, 0, 0, 0, 0] (1, 1, 2, 3, 4, 5, 7, 9, 11, 7, 3, 6) (1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3) −2

(3, 6) [0, 0, 0, 0, 0, 0, 0, 2, 0] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 3, 6) (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3) 0

(3, 6) [0, 0, 0, 0, 0, 0, 1, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 10, 6, 3, 6) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3) −2

(3, 6) [0, 1, 0, 0, 1, 0, 0, 0, 1] (1, 1, 1, 2, 3, 4, 6, 8, 10, 6, 3, 6) (1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3) 2

(3, 6) [1, 0, 0, 0, 0, 0, 1, 1, 0] (1, 1, 2, 3, 4, 5, 6, 7, 9, 6, 3, 6) (1, 0, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3) 2

(3, 6) [1, 0, 0, 0, 0, 1, 0, 0, 1] (1, 1, 2, 3, 4, 5, 6, 8, 10, 6, 3, 6) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3) 0

(3, 6) [0, 0, 0, 0, 0, 0, 0, 1, 2] (1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 3, 6) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 3) 2

(4, 6) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 4, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2) −6

(4, 6) [0, 1, 1, 0, 0, 0, 0, 0, 0] (1, 1, 1, 2, 4, 6, 8, 10, 12, 8, 4, 6) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2) −2

(4, 6) [1, 0, 0, 1, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 8, 4, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2) −4

(4, 6) [0, 0, 0, 0, 0, 0, 1, 1, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 7, 4, 6) (1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2) −2

(4, 6) [0, 0, 0, 0, 0, 1, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 9, 11, 7, 4, 6) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 2) −4

(4, 6) [0, 0, 2, 0, 0, 0, 0, 0, 1] (1, 1, 1, 1, 3, 5, 7, 9, 11, 7, 4, 6) (1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 3, 2) 2

(4, 6) [0, 1, 0, 0, 1, 0, 0, 1, 0] (1, 1, 1, 2, 3, 4, 6, 8, 10, 7, 4, 6) (1, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 2) 2

(4, 6) [0, 1, 0, 1, 0, 0, 0, 0, 1] (1, 1, 1, 2, 3, 5, 7, 9, 11, 7, 4, 6) (1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 3, 2) 0

(4, 6) [1, 0, 0, 0, 0, 0, 2, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 10, 7, 4, 6) (1, 0, 1, 1, 1, 1, 1, 1, 3, 3, 3, 2) 2

(4, 6) [1, 0, 0, 0, 0, 1, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 7, 4, 6) (1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 2) 0

(4, 6) [1, 0, 0, 0, 1, 0, 0, 0, 1] (1, 1, 2, 3, 4, 5, 7, 9, 11, 7, 4, 6) (1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2) −2

(4, 6) [0, 0, 0, 0, 0, 0, 0, 2, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 4, 6) (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 2) 2

(4, 6) [0, 0, 0, 0, 0, 0, 1, 0, 2] (1, 2, 3, 4, 5, 6, 7, 8, 10, 6, 4, 6) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 2) 0

(4, 6) [1, 0, 0, 0, 0, 1, 0, 0, 2] (1, 1, 2, 3, 4, 5, 6, 8, 10, 6, 4, 6) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2) 2

(5, 6) [0, 0, 0, 1, 0, 0, 0, 0, 0] (1, 2, 3, 4, 5, 7, 9, 11, 13, 9, 5, 6) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1) −6

(5, 6) [0, 2, 0, 0, 0, 0, 0, 0, 0] (1, 1, 1, 3, 5, 7, 9, 11, 13, 9, 5, 6) (1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 1) −2

(5, 6) [1, 0, 1, 0, 0, 0, 0, 0, 0] (1, 1, 2, 3, 5, 7, 9, 11, 13, 9, 5, 6) (1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1) −4

(5, 6) [0, 0, 0, 0, 0, 0, 2, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 11, 8, 5, 6) (1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) 0

(5, 6) [0, 0, 0, 0, 0, 1, 0, 1, 0] (1, 2, 3, 4, 5, 6, 7, 9, 11, 8, 5, 6) (1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1) −2

(5, 6) [0, 0, 0, 0, 1, 0, 0, 0, 1] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 5, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 1) −4

(5, 6) [0, 1, 0, 1, 0, 0, 0, 1, 0] (1, 1, 1, 2, 3, 5, 7, 9, 11, 8, 5, 6) (1, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 1) 2

(5, 6) [0, 1, 1, 0, 0, 0, 0, 0, 1] (1, 1, 1, 2, 4, 6, 8, 10, 12, 8, 5, 6) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 3, 1) 0

(5, 6) [1, 0, 0, 0, 0, 1, 1, 0, 0] (1, 1, 2, 3, 4, 5, 6, 8, 11, 8, 5, 6) (1, 0, 1, 1, 1, 1, 1, 2, 3, 3, 3, 1) 2

(5, 6) [1, 0, 0, 0, 1, 0, 0, 1, 0] (1, 1, 2, 3, 4, 5, 7, 9, 11, 8, 5, 6) (1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 1) 0

(5, 6) [1, 0, 0, 1, 0, 0, 0, 0, 1] (1, 1, 2, 3, 4, 6, 8, 10, 12, 8, 5, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1) −2

(5, 6) [0, 0, 0, 0, 0, 0, 1, 1, 1] (1, 2, 3, 4, 5, 6, 7, 8, 10, 7, 5, 6) (1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1) 2

(5, 6) [0, 0, 0, 0, 0, 1, 0, 0, 2] (1, 2, 3, 4, 5, 6, 7, 9, 11, 7, 5, 6) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 1) 0

(5, 6) [1, 0, 0, 0, 1, 0, 0, 0, 2] (1, 1, 2, 3, 4, 5, 7, 9, 11, 7, 5, 6) (1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 4, 1) 2

(6, 6) [0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 2, 3, 4, 6, 8, 10, 12, 14, 10, 6, 6) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0) −4

(6, 6) [1, 1, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 4, 6, 8, 10, 12, 14, 10, 6, 6) (1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0) −2

(6, 6) [0, 0, 0, 0, 0, 1, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 9, 12, 9, 6, 6) (1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 0) 2

(6, 6) [0, 0, 0, 0, 1, 0, 0, 1, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 9, 6, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 0) 0

(6, 6) [0, 0, 0, 1, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 7, 9, 11, 13, 9, 6, 6) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 0) −2

(6, 6) [0, 2, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 3, 5, 7, 9, 11, 13, 9, 6, 6) (1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 3, 0) 2

(6, 6) [1, 0, 0, 1, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 9, 6, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 0) 2

(6, 6) [1, 0, 1, 0, 0, 0, 0, 0, 1] (1, 1, 2, 3, 5, 7, 9, 11, 13, 9, 6, 6) (1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 0) 0

(6, 6) [0, 0, 0, 0, 1, 0, 0, 0, 2] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 6, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 0) 2

(2, 7) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 7, 2, 7) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 5) 2

(3, 7) [0, 0, 0, 1, 0, 0, 0, 0, 0] (1, 2, 3, 4, 5, 7, 9, 11, 13, 8, 3, 7) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4) −4

(3, 7) [0, 2, 0, 0, 0, 0, 0, 0, 0] (1, 1, 1, 3, 5, 7, 9, 11, 13, 8, 3, 7) (1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 4) 0

(3, 7) [1, 0, 1, 0, 0, 0, 0, 0, 0] (1, 1, 2, 3, 5, 7, 9, 11, 13, 8, 3, 7) (1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4) −2

(3, 7) [0, 0, 0, 0, 0, 0, 2, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 11, 7, 3, 7) (1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 4) 2

(3, 7) [0, 0, 0, 0, 0, 1, 0, 1, 0] (1, 2, 3, 4, 5, 6, 7, 9, 11, 7, 3, 7) (1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4) 0

(3, 7) [0, 0, 0, 0, 1, 0, 0, 0, 1] (1, 2, 3, 4, 5, 6, 8, 10, 12, 7, 3, 7) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4) −2

(3, 7) [0, 1, 1, 0, 0, 0, 0, 0, 1] (1, 1, 1, 2, 4, 6, 8, 10, 12, 7, 3, 7) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 3, 4) 2

(3, 7) [1, 0, 0, 0, 1, 0, 0, 1, 0] (1, 1, 2, 3, 4, 5, 7, 9, 11, 7, 3, 7) (1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4) 2

(3, 7) [1, 0, 0, 1, 0, 0, 0, 0, 1] (1, 1, 2, 3, 4, 6, 8, 10, 12, 7, 3, 7) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4) 0

(3, 7) [0, 0, 0, 0, 0, 1, 0, 0, 2] (1, 2, 3, 4, 5, 6, 7, 9, 11, 6, 3, 7) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4) 2
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Level A9 weights E12 Root E12 Root Root length

(m10, m11) (αi basis) (ei basis) squared

(4, 7) [0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 2, 3, 4, 6, 8, 10, 12, 14, 9, 4, 7) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3) −8

(4, 7) [1, 1, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 4, 6, 8, 10, 12, 14, 9, 4, 7) (1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3) −6

(4, 7) [0, 0, 0, 0, 0, 1, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 9, 12, 8, 4, 7) (1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3) −2

(4, 7) [0, 0, 0, 0, 1, 0, 0, 1, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 4, 7) (1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3) −4

(4, 7) [0, 0, 0, 1, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 7, 9, 11, 13, 8, 4, 7) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3) −6

(4, 7) [0, 1, 0, 1, 0, 0, 1, 0, 0] (1, 1, 1, 2, 3, 5, 7, 9, 12, 8, 4, 7) (1, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3) 2

(4, 7) [0, 1, 1, 0, 0, 0, 0, 1, 0] (1, 1, 1, 2, 4, 6, 8, 10, 12, 8, 4, 7) (1, 0, 0, 1, 2, 2, 2, 2, 2, 3, 3, 3) 0

(4, 7) [0, 2, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 3, 5, 7, 9, 11, 13, 8, 4, 7) (1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 3, 3) −2

(4, 7) [1, 0, 0, 0, 0, 2, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 9, 12, 8, 4, 7) (1, 0, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3) 2

(4, 7) [1, 0, 0, 0, 1, 0, 1, 0, 0] (1, 1, 2, 3, 4, 5, 7, 9, 12, 8, 4, 7) (1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3) 0

(4, 7) [1, 0, 0, 1, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 8, 4, 7) (1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3) −2

(4, 7) [1, 0, 1, 0, 0, 0, 0, 0, 1] (1, 1, 2, 3, 5, 7, 9, 11, 13, 8, 4, 7) (1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3) −4

(4, 7) [0, 0, 0, 0, 0, 0, 2, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 11, 7, 4, 7) (1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 3) 2

(4, 7) [0, 0, 0, 0, 0, 1, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 9, 11, 7, 4, 7) (1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 3) 0

(4, 7) [0, 0, 0, 0, 1, 0, 0, 0, 2] (1, 2, 3, 4, 5, 6, 8, 10, 12, 7, 4, 7) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 3) −2

(4, 7) [0, 1, 1, 0, 0, 0, 0, 0, 2] (1, 1, 1, 2, 4, 6, 8, 10, 12, 7, 4, 7) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 4, 3) 2

(4, 7) [1, 0, 0, 0, 1, 0, 0, 1, 1] (1, 1, 2, 3, 4, 5, 7, 9, 11, 7, 4, 7) (1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 3) 2

(4, 7) [1, 0, 0, 1, 0, 0, 0, 0, 2] (1, 1, 2, 3, 4, 6, 8, 10, 12, 7, 4, 7) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 4, 3) 0

Table 26: Low level weights in the IIA supergravity of the l1 representation of E11.

Level A9 weights E12 Root E12 Root Root length

(m9, m10) (αi basis) (ei basis) squared

(0, 0) [1, 0, 0, 0, 0, 0, 0, 0, 0] (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 2

(1, 0) [0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0) 2

(1, 1) [0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1) 2

(2, 1) [0, 0, 0, 0, 0, 0, 1, 0, 0] (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1) (1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0) 2

(3, 1) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 1, 2) (1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1) 2

(3, 2) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 2) (1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0) 2

(4, 1) [0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 1, 1, 1, 2, 3, 4, 5, 6, 4, 1, 3) (1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 2) 2

(4, 2) [0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 1, 1, 1, 2, 3, 4, 5, 6, 4, 2, 3) (1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) 0

(4, 2) [0, 0, 0, 1, 0, 0, 0, 0, 1] (1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 2, 2) (1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0) 2

(4, 3) [0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 1, 1, 1, 2, 3, 4, 5, 6, 4, 3, 3) (1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0) 2

(5, 1) [1, 0, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 1, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3) 2

(5, 2) [1, 0, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 2, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2) −2

(5, 2) [0, 0, 1, 0, 0, 0, 0, 1, 0] (1, 1, 1, 1, 2, 3, 4, 5, 6, 5, 2, 3) (1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 1) 2

(5, 2) [0, 1, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 2, 3, 4, 5, 6, 7, 5, 2, 3) (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) 0

(5, 3) [1, 0, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 3, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1) −2

(5, 3) [0, 0, 1, 0, 0, 0, 0, 1, 0] (1, 1, 1, 1, 2, 3, 4, 5, 6, 5, 3, 3) (1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 0) 2

(5, 3) [0, 1, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 2, 3, 4, 5, 6, 7, 5, 3, 3) (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0) 0

(5, 4) [1, 0, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 5, 4, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0) 2

(6, 2) [0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 2, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2) −2

(6, 2) [0, 1, 0, 0, 0, 0, 1, 0, 0] (1, 1, 1, 2, 3, 4, 5, 6, 8, 6, 2, 4) (1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 0, 2) 2

(6, 2) [1, 0, 0, 0, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 6, 2, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2) 0

(6, 2) [1, 0, 0, 0, 0, 0, 0, 0, 2] (1, 1, 2, 3, 4, 5, 6, 7, 8, 6, 2, 3) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1,−1, 1) 2

(6, 3) [0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 3, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) −4

(6, 3) [0, 0, 1, 0, 0, 1, 0, 0, 0] (1, 1, 1, 1, 2, 3, 4, 6, 8, 6, 3, 4) (1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 1, 1) 2

(6, 3) [0, 1, 0, 0, 0, 0, 1, 0, 0] (1, 1, 1, 2, 3, 4, 5, 6, 8, 6, 3, 4) (1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1) 0

(6, 3) [1, 0, 0, 0, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 6, 3, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) −2

(6, 3) [0, 1, 0, 0, 0, 0, 0, 1, 1] (1, 1, 1, 2, 3, 4, 5, 6, 7, 6, 3, 3) (1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0) 2

(6, 3) [1, 0, 0, 0, 0, 0, 0, 0, 2] (1, 1, 2, 3, 4, 5, 6, 7, 8, 6, 3, 3) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 0

(6, 4) [0, 0, 0, 0, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 4, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0) −2

(6, 4) [0, 1, 0, 0, 0, 0, 1, 0, 0] (1, 1, 1, 2, 3, 4, 5, 6, 8, 6, 4, 4) (1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 0) 2

(6, 4) [1, 0, 0, 0, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 6, 4, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0) 0
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Level A9 weights E12 Root E12 Root Root length

(m9, m10) (αi basis) (ei basis) squared

(6, 4) [1, 0, 0, 0, 0, 0, 0, 0, 2] (1, 1, 2, 3, 4, 5, 6, 7, 8, 6, 4, 3) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,−1) 2

(7, 2) [0, 0, 0, 0, 0, 0, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 7, 2, 5) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 3) 0

(7, 2) [1, 0, 0, 0, 0, 1, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 7, 2, 5) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 0, 3) 2

(7, 2) [0, 0, 0, 0, 0, 0, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 2, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2,−1, 2) 2

(7, 3) [0, 0, 0, 0, 0, 0, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 7, 3, 5) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2) −4

(7, 3) [0, 0, 1, 1, 0, 0, 0, 0, 0] (1, 1, 1, 1, 2, 4, 6, 8, 10, 7, 3, 5) (1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 1, 2) 2

(7, 3) [0, 1, 0, 0, 1, 0, 0, 0, 0] (1, 1, 1, 2, 3, 4, 6, 8, 10, 7, 3, 5) (1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 1, 2) 0

(7, 3) [1, 0, 0, 0, 0, 1, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 7, 3, 5) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2) −2

(7, 3) [0, 0, 0, 0, 0, 0, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 3, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1) −2

(7, 3) [0, 1, 0, 0, 0, 1, 0, 0, 1] (1, 1, 1, 2, 3, 4, 5, 7, 9, 7, 3, 4) (1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 0, 1) 2

(7, 3) [1, 0, 0, 0, 0, 0, 0, 2, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 3, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 0, 1) 2

(7, 3) [1, 0, 0, 0, 0, 0, 1, 0, 1] (1, 1, 2, 3, 4, 5, 6, 7, 9, 7, 3, 4) (1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 0, 1) 0

(7, 3) [0, 0, 0, 0, 0, 0, 0, 0, 3] (1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 3, 3) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−1, 0) 2

(7, 4) [0, 0, 0, 0, 0, 0, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 7, 4, 5) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1) −4

(7, 4) [0, 0, 1, 1, 0, 0, 0, 0, 0] (1, 1, 1, 1, 2, 4, 6, 8, 10, 7, 4, 5) (1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 1) 2

(7, 4) [0, 1, 0, 0, 1, 0, 0, 0, 0] (1, 1, 1, 2, 3, 4, 6, 8, 10, 7, 4, 5) (1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1) 0

(7, 4) [1, 0, 0, 0, 0, 1, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 7, 4, 5) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1) −2

(7, 4) [0, 0, 0, 0, 0, 0, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 4, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0) −2

(7, 4) [0, 1, 0, 0, 0, 1, 0, 0, 1] (1, 1, 1, 2, 3, 4, 5, 7, 9, 7, 4, 4) (1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 0) 2

(7, 4) [1, 0, 0, 0, 0, 0, 0, 2, 0] (1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 4, 4) (1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 1, 0) 2

(7, 4) [1, 0, 0, 0, 0, 0, 1, 0, 1] (1, 1, 2, 3, 4, 5, 6, 7, 9, 7, 4, 4) (1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0) 0

(7, 4) [0, 0, 0, 0, 0, 0, 0, 0, 3] (1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 4, 3) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,−1) 2

(7, 5) [0, 0, 0, 0, 0, 0, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 7, 5, 5) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 0) 0

(7, 5) [1, 0, 0, 0, 0, 1, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 7, 5, 5) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 0) 2

(7, 5) [0, 0, 0, 0, 0, 0, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 5, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,−1) 2

(8, 2) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 2, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 4) 2

(8, 3) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 3, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3) −4

(8, 3) [0, 1, 1, 0, 0, 0, 0, 0, 0] (1, 1, 1, 2, 4, 6, 8, 10, 12, 8, 3, 6) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 1, 3) 0

(8, 3) [1, 0, 0, 1, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 8, 3, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 3) −2

(8, 3) [0, 0, 0, 0, 0, 0, 1, 1, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 8, 3, 5) (1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 0, 2) 0

(8, 3) [0, 0, 0, 0, 0, 1, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 9, 11, 8, 3, 5) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 0, 2) −2

(8, 3) [0, 1, 0, 1, 0, 0, 0, 0, 1] (1, 1, 1, 2, 3, 5, 7, 9, 11, 8, 3, 5) (1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 0, 2) 2

(8, 3) [1, 0, 0, 0, 0, 1, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 8, 3, 5) (1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 0, 2) 2

(8, 3) [1, 0, 0, 0, 1, 0, 0, 0, 1] (1, 1, 2, 3, 4, 5, 7, 9, 11, 8, 3, 5) (1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 0, 2) 0

(8, 3) [0, 0, 0, 0, 0, 0, 1, 0, 2] (1, 2, 3, 4, 5, 6, 7, 8, 10, 8, 3, 4) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2,−1, 1) 2

(8, 4) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 4, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2) −6

(8, 4) [0, 1, 1, 0, 0, 0, 0, 0, 0] (1, 1, 1, 2, 4, 6, 8, 10, 12, 8, 4, 6) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2) −2

(8, 4) [1, 0, 0, 1, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 8, 4, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2) −4

(8, 4) [0, 0, 0, 0, 0, 0, 1, 1, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 8, 4, 5) (1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1) −2

(8, 4) [0, 0, 0, 0, 0, 1, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 9, 11, 8, 4, 5) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1) −4

(8, 4) [0, 0, 2, 0, 0, 0, 0, 0, 1] (1, 1, 1, 1, 3, 5, 7, 9, 11, 8, 4, 5) (1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1) 2

(8, 4) [0, 1, 0, 0, 1, 0, 0, 1, 0] (1, 1, 1, 2, 3, 4, 6, 8, 10, 8, 4, 5) (1, 0, 0, 1, 1, 1, 2, 2, 2, 3, 1, 1) 2

(8, 4) [0, 1, 0, 1, 0, 0, 0, 0, 1] (1, 1, 1, 2, 3, 5, 7, 9, 11, 8, 4, 5) (1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 1, 1) 0

(8, 4) [1, 0, 0, 0, 0, 0, 2, 0, 0] (1, 1, 2, 3, 4, 5, 6, 7, 10, 8, 4, 5) (1, 0, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1) 2

(8, 4) [1, 0, 0, 0, 0, 1, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 8, 4, 5) (1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1) 0

(8, 4) [1, 0, 0, 0, 1, 0, 0, 0, 1] (1, 1, 2, 3, 4, 5, 7, 9, 11, 8, 4, 5) (1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1) −2

(8, 4) [0, 0, 0, 0, 0, 0, 0, 2, 1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 4, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0, 0) 2

(8, 4) [0, 0, 0, 0, 0, 0, 1, 0, 2] (1, 2, 3, 4, 5, 6, 7, 8, 10, 8, 4, 4) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0) 0

(8, 4) [1, 0, 0, 0, 0, 1, 0, 0, 2] (1, 1, 2, 3, 4, 5, 6, 8, 10, 8, 4, 4) (1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 0, 0) 2

(8, 5) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 5, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 1) −4

(8, 5) [0, 1, 1, 0, 0, 0, 0, 0, 0] (1, 1, 1, 2, 4, 6, 8, 10, 12, 8, 5, 6) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 3, 1) 0

(8, 5) [1, 0, 0, 1, 0, 0, 0, 0, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 8, 5, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1) −2

(8, 5) [0, 0, 0, 0, 0, 0, 1, 1, 0] (1, 2, 3, 4, 5, 6, 7, 8, 10, 8, 5, 5) (1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 0) 0

(8, 5) [0, 0, 0, 0, 0, 1, 0, 0, 1] (1, 2, 3, 4, 5, 6, 7, 9, 11, 8, 5, 5) (1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0) −2

(8, 5) [0, 1, 0, 1, 0, 0, 0, 0, 1] (1, 1, 1, 2, 3, 5, 7, 9, 11, 8, 5, 5) (1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 0) 2

Table 27 — Continued on next page
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Table 27 — Continued from previous page

Level A9 weights E12 Root E12 Root Root length

(m9, m10) (αi basis) (ei basis) squared

(8, 5) [1, 0, 0, 0, 0, 1, 0, 1, 0] (1, 1, 2, 3, 4, 5, 6, 8, 10, 8, 5, 5) (1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 2, 0) 2

(8, 5) [1, 0, 0, 0, 1, 0, 0, 0, 1] (1, 1, 2, 3, 4, 5, 7, 9, 11, 8, 5, 5) (1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0) 0

(8, 5) [0, 0, 0, 0, 0, 0, 1, 0, 2] (1, 2, 3, 4, 5, 6, 7, 8, 10, 8, 5, 4) (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1,−1) 2

(8, 6) [0, 0, 0, 0, 1, 0, 0, 0, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 8, 6, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 0) 2

(9, 3) [0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 2, 3, 4, 6, 8, 10, 12, 14, 9, 3, 7) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 4) −4

(9, 3) [1, 1, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 4, 6, 8, 10, 12, 14, 9, 3, 7) (1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 1, 4) −2

(9, 3) [0, 0, 0, 0, 0, 1, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 9, 12, 9, 3, 6) (1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 0, 3) 2

(9, 3) [0, 0, 0, 0, 1, 0, 0, 1, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 9, 3, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 0, 3) 0

(9, 3) [0, 0, 0, 1, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 7, 9, 11, 13, 9, 3, 6) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 3) −2

(9, 3) [0, 2, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 3, 5, 7, 9, 11, 13, 9, 3, 6) (1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 3) 2

(9, 3) [1, 0, 0, 1, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 9, 3, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 0, 3) 2

(9, 3) [1, 0, 1, 0, 0, 0, 0, 0, 1] (1, 1, 2, 3, 5, 7, 9, 11, 13, 9, 3, 6) (1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 0, 3) 0

(9, 3) [0, 0, 0, 0, 1, 0, 0, 0, 2] (1, 2, 3, 4, 5, 6, 8, 10, 12, 9, 3, 5) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2,−1, 2) 2

(9, 4) [0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 2, 3, 4, 6, 8, 10, 12, 14, 9, 4, 7) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3) −8

(9, 4) [1, 1, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 4, 6, 8, 10, 12, 14, 9, 4, 7) (1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3) −6

(9, 4) [0, 0, 0, 0, 0, 1, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 9, 12, 9, 4, 6) (1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 2) −2

(9, 4) [0, 0, 0, 0, 1, 0, 0, 1, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 9, 4, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 2) −4

(9, 4) [0, 0, 0, 1, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 7, 9, 11, 13, 9, 4, 6) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2) −6

(9, 4) [0, 1, 0, 1, 0, 0, 1, 0, 0] (1, 1, 1, 2, 3, 5, 7, 9, 12, 9, 4, 6) (1, 0, 0, 1, 1, 2, 2, 2, 3, 3, 1, 2) 2

(9, 4) [0, 1, 1, 0, 0, 0, 0, 1, 0] (1, 1, 1, 2, 4, 6, 8, 10, 12, 9, 4, 6) (1, 0, 0, 1, 2, 2, 2, 2, 2, 3, 1, 2) 0

(9, 4) [0, 2, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 3, 5, 7, 9, 11, 13, 9, 4, 6) (1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2) −2

(9, 4) [1, 0, 0, 0, 0, 2, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 9, 12, 9, 4, 6) (1, 0, 1, 1, 1, 1, 1, 3, 3, 3, 1, 2) 2

(9, 4) [1, 0, 0, 0, 1, 0, 1, 0, 0] (1, 1, 2, 3, 4, 5, 7, 9, 12, 9, 4, 6) (1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 1, 2) 0

(9, 4) [1, 0, 0, 1, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 9, 4, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2) −2

(9, 4) [1, 0, 1, 0, 0, 0, 0, 0, 1] (1, 1, 2, 3, 5, 7, 9, 11, 13, 9, 4, 6) (1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2) −4

(9, 4) [0, 0, 0, 0, 0, 0, 2, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 11, 9, 4, 5) (1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 0, 1) 2

(9, 4) [0, 0, 0, 0, 0, 1, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 9, 11, 9, 4, 5) (1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 0, 1) 0

(9, 4) [0, 0, 0, 0, 1, 0, 0, 0, 2] (1, 2, 3, 4, 5, 6, 8, 10, 12, 9, 4, 5) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 1) −2

(9, 4) [0, 1, 1, 0, 0, 0, 0, 0, 2] (1, 1, 1, 2, 4, 6, 8, 10, 12, 9, 4, 5) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 0, 1) 2

(9, 4) [1, 0, 0, 0, 1, 0, 0, 1, 1] (1, 1, 2, 3, 4, 5, 7, 9, 11, 9, 4, 5) (1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 0, 1) 2

(9, 4) [1, 0, 0, 1, 0, 0, 0, 0, 2] (1, 1, 2, 3, 4, 6, 8, 10, 12, 9, 4, 5) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 0, 1) 0

(9, 5) [0, 0, 1, 0, 0, 0, 0, 0, 0] (1, 2, 3, 4, 6, 8, 10, 12, 14, 9, 5, 7) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2) −8

(9, 5) [1, 1, 0, 0, 0, 0, 0, 0, 0] (1, 1, 2, 4, 6, 8, 10, 12, 14, 9, 5, 7) (1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2) −6

(9, 5) [0, 0, 0, 0, 0, 1, 1, 0, 0] (1, 2, 3, 4, 5, 6, 7, 9, 12, 9, 5, 6) (1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1) −2

(9, 5) [0, 0, 0, 0, 1, 0, 0, 1, 0] (1, 2, 3, 4, 5, 6, 8, 10, 12, 9, 5, 6) (1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 2, 1) −4

(9, 5) [0, 0, 0, 1, 0, 0, 0, 0, 1] (1, 2, 3, 4, 5, 7, 9, 11, 13, 9, 5, 6) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1) −6

(9, 5) [0, 1, 0, 1, 0, 0, 1, 0, 0] (1, 1, 1, 2, 3, 5, 7, 9, 12, 9, 5, 6) (1, 0, 0, 1, 1, 2, 2, 2, 3, 3, 2, 1) 2

(9, 5) [0, 1, 1, 0, 0, 0, 0, 1, 0] (1, 1, 1, 2, 4, 6, 8, 10, 12, 9, 5, 6) (1, 0, 0, 1, 2, 2, 2, 2, 2, 3, 2, 1) 0

(9, 5) [0, 2, 0, 0, 0, 0, 0, 0, 1] (1, 1, 1, 3, 5, 7, 9, 11, 13, 9, 5, 6) (1, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 1) −2

(9, 5) [1, 0, 0, 0, 0, 2, 0, 0, 0] (1, 1, 2, 3, 4, 5, 6, 9, 12, 9, 5, 6) (1, 0, 1, 1, 1, 1, 1, 3, 3, 3, 2, 1) 2

(9, 5) [1, 0, 0, 0, 1, 0, 1, 0, 0] (1, 1, 2, 3, 4, 5, 7, 9, 12, 9, 5, 6) (1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 2, 1) 0

(9, 5) [1, 0, 0, 1, 0, 0, 0, 1, 0] (1, 1, 2, 3, 4, 6, 8, 10, 12, 9, 5, 6) (1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 2, 1) −2

(9, 5) [1, 0, 1, 0, 0, 0, 0, 0, 1] (1, 1, 2, 3, 5, 7, 9, 11, 13, 9, 5, 6) (1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1) −4

(9, 5) [0, 0, 0, 0, 0, 0, 2, 0, 1] (1, 2, 3, 4, 5, 6, 7, 8, 11, 9, 5, 5) (1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 0) 2

(9, 5) [0, 0, 0, 0, 0, 1, 0, 1, 1] (1, 2, 3, 4, 5, 6, 7, 9, 11, 9, 5, 5) (1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 0) 0

(9, 5) [0, 0, 0, 0, 1, 0, 0, 0, 2] (1, 2, 3, 4, 5, 6, 8, 10, 12, 9, 5, 5) (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 0) −2

(9, 5) [0, 1, 1, 0, 0, 0, 0, 0, 2] (1, 1, 1, 2, 4, 6, 8, 10, 12, 9, 5, 5) (1, 0, 0, 1, 2, 2, 2, 2, 2, 2, 1, 0) 2

(9, 5) [1, 0, 0, 0, 1, 0, 0, 1, 1] (1, 1, 2, 3, 4, 5, 7, 9, 11, 9, 5, 5) (1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 1, 0) 2

(9, 5) [1, 0, 0, 1, 0, 0, 0, 0, 2] (1, 1, 2, 3, 4, 6, 8, 10, 12, 9, 5, 5) (1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 0) 0

Table 27: Low level weights in the IIB supergravity decomposition of the l1 representation

of E11.
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